Виявлення об’єктів в процесі розпізнавання зображень за допомогою трансформерів

Modern object detection methods in the image recognition process using transformer technology are analyzed. The various methods advantages and disadvantages are identified. An own network was created based on the DETR transformer from the FAIR team, and its operation was analyzed. A comparison of th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2022
Автори: Миронюк, Дмитро, Благітко, Богдан, Заячук, Ігор
Формат: Стаття
Мова:Ukrainian
Опубліковано: Kamianets-Podilskyi National Ivan Ohiienko University 2022
Онлайн доступ:http://mcm-tech.kpnu.edu.ua/article/view/269340
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Mathematical and computer modelling. Series: Technical sciences

Репозитарії

Mathematical and computer modelling. Series: Technical sciences
Опис
Резюме:Modern object detection methods in the image recognition process using transformer technology are analyzed. The various methods advantages and disadvantages are identified. An own network was created based on the DETR transformer from the FAIR team, and its operation was analyzed. A comparison of the transformer networks performance with optimized architectures of convolutional neural networks is made. The cloud computing tools, graphics processors, Internet of Things clusters or embedded microprocessor systems were used in the research process. To ensure high object detector accuracy and real-time detection results on different types of devices, an efficient object detector and model scaling technique are required. The transformer model learning is illustrated step-by-step process.