Математична модель реології фрактально-неоднорідних пластових систем

The conditions of «smoothness» of heterogeneous components Front separation (heterogeneous) systems by analyzing the «jump» feature in saturation Bakley-Leverett. It is shown that «jump» saturation absent, and the division front was moving and keeps the «smoothness» when the movable components that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
Hauptverfasser: Положаєнко, Сергій Анатолійович, Савіч, Віталій Святославович
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Kamianets-Podilskyi National Ivan Ohiienko University 2016
Online Zugang:http://mcm-tech.kpnu.edu.ua/article/view/94245
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Mathematical and computer modelling. Series: Technical sciences

Institution

Mathematical and computer modelling. Series: Technical sciences
Beschreibung
Zusammenfassung:The conditions of «smoothness» of heterogeneous components Front separation (heterogeneous) systems by analyzing the «jump» feature in saturation Bakley-Leverett. It is shown that «jump» saturation absent, and the division front was moving and keeps the «smoothness» when the movable components that squeezes does not exceed movable components that squeezed. Also show that violations of the «smoothness» Front separation leads to inhomogeneous fractal structure process rheology. A numerical values fractal dimension of the front division for rheological process that occurs in real geological conditions. The mathematical model of fractal-heterogeneous systems in a class of varitional inequalities.