Structure, properties and morphology of nanostructured coatings solid Ti-Si-N
The work presents a comparative analysis of results obtained from samples of nanostructured Ti-Si-N coatings. Element composition, defect structure, concentration of elements throughout the depth of coating and morphology of films were studied using the techniques of slow positron beam (SPB),...
Збережено в:
| Опубліковано в: : | Физическая инженерия поверхности |
|---|---|
| Дата: | 2013 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Науковий фізико-технологічний центр МОН та НАН України
2013
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/100310 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Structure, properties and morphology of nanostructured coatings solid Ti-Si-N/ M.V. Kaverin, B. Zhollybekov // Физическая инженерия поверхности. — 2013. — Т. 11, № 3. — С. 263–269. — Бібліогр.: 19 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-100310 |
|---|---|
| record_format |
dspace |
| spelling |
Zhollybekov, B. Kaverin, M.V. 2016-05-19T15:48:45Z 2016-05-19T15:48:45Z 2013 Structure, properties and morphology of nanostructured coatings solid Ti-Si-N/ M.V. Kaverin, B. Zhollybekov // Физическая инженерия поверхности. — 2013. — Т. 11, № 3. — С. 263–269. — Бібліогр.: 19 назв. — англ. 1999-8074 PACS NUMBER: 61.05.CM, 61.46.HK, 62.20.QP.68.37.HK, 81.15.-Z https://nasplib.isofts.kiev.ua/handle/123456789/100310 The work presents a comparative analysis of results obtained from samples of nanostructured Ti-Si-N coatings. Element composition, defect structure, concentration of elements throughout the depth of coating and morphology of films were studied using the techniques of slow positron beam (SPB), X-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectrometry (RBS), proton microbeam (µ-PIXE), X-ray diffraction (XRD), scanning electron microscopy with energy − dispersive analysis (SEM with EDS). Results of mentioned above experiments showed that changing the substrate potential during deposition of coatings the stoichiometry and morphology of obtained coatings changes too. After thermal treatment up to 600 °C the formation of two phases: solid solution of TiN, and amorphous or quasi-amorphous α-SiNx (Si₃N₄) envelope was observed. During experiments the grain size did not change significantly, while the extra energy was used for the completion of the spinodal (phase) segregation. В работе представлен сравнительный анализ результатов, полученных на образцах наноструктурированных покрытий Ti-Si-N. Элементный состав, дефектная структура, концентрация элементов по глубине покрытия и морфология пленок были изучены с использованием таких методов как пучок медленных позитронов (SPB), рентгеновской фотоэлектронной спектроскопии (РФЭС), резерфордовского обратного рассеяния (RBS), протонного микропучка (µ-PIXE), рентгеноструктурного анализа (РСА), сканирующей электронной микроскопии с энергодисперсионным анализом (SEM с EDS). Результаты указанных выше экспериментов показали, что изменение потенциала подложки во время нанесения покрытий приводит к изменению стехиометрии и морфологии получаемых покрытий. Кроме того после термической обработки до 600 °С наблюдается образование двух фаз: твердого раствора TiN и аморфной или квазиаморфной фазы α-SiNх (Si₃N₄). В ходе экспериментов размер зерна не изменился, а дополнительная термическая обработка способствовала завершению спинодальный (фазовой) сегрегации. У роботі представлений порівняльний аналіз результатів, отриманих на зразках наноструктурованих покриттів Ti-Si-N. Елементний склад, дефектна структура, концентрація елементів за глибиноюпокриття та морфологія плівок були досліджені з використанням таких методів як пучок повільних позитронів (SPB), рентгенівської фотоелектронної спектроскопії (РФЕС), резерфордівського зворотнього розсіювання (RBS), протонного мікропучка (µ-PIXE), рентгеноструктурного аналізу (РСА), скануючої електронної мікроскопіїз енергодисперсійним аналізом (SEM з EDS). Результати зазначених вище експериментів показали, що змінювання потенціалу підкладки під час нанесення покриттів призводить до змінювання стехіометрії та морфології одержаних покриттів. Крім того після термічної обробки при 600 °С спостерігається утворення двох фаз: твердого розчину TiN та аморфної або квазіаморфної фази α-SiNх (Si₃N₄). У ході експериментів розмір зерна не змінився, а додаткова термічна обробка сприяла завершенню спінодальної (фазової) сегрегації. Authors thanks A.D. Pogrebnjak (Sumy, Ukraine) for measuring of profiles defects using slow positron beam, G. Abrasonis (Dresden, Germany) for elements’ composition studies using RBS-analysis, V.M. Beresnev (Kharkov, Ukraine), D.A. Kolesnikov (Belgorod, Russia) and R. Krause-Rehberg (Halle, Germany). The work was done under financial support of Ministry of Education and Science of Ukraine (state program, order No. 411), and in collaboration with NIMS (Tsukuba, Japan) and Martin-Luther University (Dresden, Germany). The work was supported by Ministry of Education and Science of Ukraine (project No. 011U001382). Authors are grateful to the staff of the Joint Research Center “Diagnostics of Structure and Properties of Nanomaterials” (Belgorod State University, Russia) for their assistance with instrumental analysis. en Науковий фізико-технологічний центр МОН та НАН України Физическая инженерия поверхности Structure, properties and morphology of nanostructured coatings solid Ti-Si-N Структура, свойства и морфология твердых наноструктурированных покрытий Ti-Si-N Структура, властивості та морфологія твердих наноструктурованих покриттів Ti-Si-N Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Structure, properties and morphology of nanostructured coatings solid Ti-Si-N |
| spellingShingle |
Structure, properties and morphology of nanostructured coatings solid Ti-Si-N Zhollybekov, B. Kaverin, M.V. |
| title_short |
Structure, properties and morphology of nanostructured coatings solid Ti-Si-N |
| title_full |
Structure, properties and morphology of nanostructured coatings solid Ti-Si-N |
| title_fullStr |
Structure, properties and morphology of nanostructured coatings solid Ti-Si-N |
| title_full_unstemmed |
Structure, properties and morphology of nanostructured coatings solid Ti-Si-N |
| title_sort |
structure, properties and morphology of nanostructured coatings solid ti-si-n |
| author |
Zhollybekov, B. Kaverin, M.V. |
| author_facet |
Zhollybekov, B. Kaverin, M.V. |
| publishDate |
2013 |
| language |
English |
| container_title |
Физическая инженерия поверхности |
| publisher |
Науковий фізико-технологічний центр МОН та НАН України |
| format |
Article |
| title_alt |
Структура, свойства и морфология твердых наноструктурированных покрытий Ti-Si-N Структура, властивості та морфологія твердих наноструктурованих покриттів Ti-Si-N |
| description |
The work presents a comparative analysis of results obtained from samples of nanostructured
Ti-Si-N coatings. Element composition, defect structure, concentration of elements throughout the
depth of coating and morphology of films were studied using the techniques of slow positron beam
(SPB), X-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectrometry (RBS),
proton microbeam (µ-PIXE), X-ray diffraction (XRD), scanning electron microscopy with energy −
dispersive analysis (SEM with EDS). Results of mentioned above experiments showed that changing
the substrate potential during deposition of coatings the stoichiometry and morphology of obtained
coatings changes too. After thermal treatment up to 600 °C the formation of two phases: solid solution
of TiN, and amorphous or quasi-amorphous α-SiNx (Si₃N₄) envelope was observed. During experiments
the grain size did not change significantly, while the extra energy was used for the completion of the
spinodal (phase) segregation.
В работе представлен сравнительный анализ результатов, полученных на образцах наноструктурированных покрытий Ti-Si-N. Элементный состав, дефектная структура, концентрация элементов по глубине покрытия и морфология пленок были изучены с использованием таких методов как пучок медленных позитронов (SPB), рентгеновской фотоэлектронной спектроскопии
(РФЭС), резерфордовского обратного рассеяния (RBS), протонного микропучка (µ-PIXE), рентгеноструктурного анализа (РСА), сканирующей электронной микроскопии с энергодисперсионным анализом (SEM с EDS). Результаты указанных выше экспериментов показали, что изменение потенциала подложки во время нанесения покрытий приводит к изменению стехиометрии и морфологии получаемых покрытий. Кроме того после термической обработки до
600 °С наблюдается образование двух фаз: твердого раствора TiN и аморфной или квазиаморфной фазы α-SiNх (Si₃N₄). В ходе экспериментов размер зерна не изменился, а дополнительная
термическая обработка способствовала завершению спинодальный (фазовой) сегрегации.
У роботі представлений порівняльний аналіз результатів, отриманих на зразках наноструктурованих покриттів Ti-Si-N. Елементний склад, дефектна структура, концентрація елементів за
глибиноюпокриття та морфологія плівок були досліджені з використанням таких методів як
пучок повільних позитронів (SPB), рентгенівської фотоелектронної спектроскопії (РФЕС), резерфордівського зворотнього розсіювання (RBS), протонного мікропучка (µ-PIXE), рентгеноструктурного аналізу (РСА), скануючої електронної мікроскопіїз енергодисперсійним аналізом (SEM
з EDS). Результати зазначених вище експериментів показали, що змінювання потенціалу підкладки під час нанесення покриттів призводить до змінювання стехіометрії та морфології одержаних
покриттів. Крім того після термічної обробки при 600 °С спостерігається утворення двох фаз:
твердого розчину TiN та аморфної або квазіаморфної фази α-SiNх (Si₃N₄). У ході експериментів
розмір зерна не змінився, а додаткова термічна обробка сприяла завершенню спінодальної
(фазової) сегрегації.
|
| issn |
1999-8074 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/100310 |
| citation_txt |
Structure, properties and morphology of nanostructured coatings solid Ti-Si-N/ M.V. Kaverin, B. Zhollybekov // Физическая инженерия поверхности. — 2013. — Т. 11, № 3. — С. 263–269. — Бібліогр.: 19 назв. — англ. |
| work_keys_str_mv |
AT zhollybekovb structurepropertiesandmorphologyofnanostructuredcoatingssolidtisin AT kaverinmv structurepropertiesandmorphologyofnanostructuredcoatingssolidtisin AT zhollybekovb strukturasvoistvaimorfologiâtverdyhnanostrukturirovannyhpokrytiitisin AT kaverinmv strukturasvoistvaimorfologiâtverdyhnanostrukturirovannyhpokrytiitisin AT zhollybekovb strukturavlastivostítamorfologíâtverdihnanostrukturovanihpokrittívtisin AT kaverinmv strukturavlastivostítamorfologíâtverdihnanostrukturovanihpokrittívtisin |
| first_indexed |
2025-11-24T20:12:58Z |
| last_indexed |
2025-11-24T20:12:58Z |
| _version_ |
1850494901938028544 |
| fulltext |
263
INTRODUCTION
One of the most important problems of modern
materials science is fabrication and construction of
new materials with unique functional properties [1–
8]. Nanostructure materials with high hardness, ela-
sticity modulus, thermal stability, wear and corrosion
PACS NUMBER: 61.05.CM, 61.46.HK, 62.20.QP.68.37.HK, 81.15.-Z
STRUCTURE, PROPERTIES AND MORPHOLOGY OF NANOSTRUCTURED
COATINGS SOLID Ti-Si-N
M.V. Kaverin1, B. Zhollybekov2
1Sumy State University
Ukraine
2Karakalpak State University (Nukus)
Uzbekistan
Received 12.08.2013
The work presents a comparative analysis of results obtained from samples of nanostructured
Ti-Si-N coatings. Element composition, defect structure, concentration of elements throughout the
depth of coating and morphology of films were studied using the techniques of slow positron beam
(SPB), X-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectrometry (RBS),
proton microbeam (µ-PIXE), X-ray diffraction (XRD), scanning electron microscopy with energy −
dispersive analysis (SEM with EDS). Results of mentioned above experiments showed that changing
the substrate potential during deposition of coatings the stoichiometry and morphology of obtained
coatings changes too. After thermal treatment up to 600 °C the formation of two phases: solid solution
of TiN, and amorphous or quasi-amorphous α-SiNx (Si3N4) envelope was observed. During experiments
the grain size did not change significantly, while the extra energy was used for the completion of the
spinodal (phase) segregation.
СТРУКТУРА, СВОЙСТВА И МОРФОЛОГИЯ ТВЕРДЫХ
НАНОСТРУКТУРИРОВАННЫХ ПОКРЫТИЙ Ti-Si-N
М.В. Каверин, Б. Жоллыбеков
В работе представлен сравнительный анализ результатов, полученных на образцах нанострук-
турированных покрытий Ti-Si-N. Элементный состав, дефектная структура, концентрация эле-
ментов по глубине покрытия и морфология пленок были изучены с использованием таких мето-
дов как пучок медленных позитронов (SPB), рентгеновской фотоэлектронной спектроскопии
(РФЭС), резерфордовского обратного рассеяния (RBS), протонного микропучка (µ-PIXE), рент-
геноструктурного анализа (РСА), сканирующей электронной микроскопии с энергодисперси-
онным анализом (SEM с EDS). Результаты указанных выше экспериментов показали, что из-
менение потенциала подложки во время нанесения покрытий приводит к изменению стехио-
метрии и морфологии получаемых покрытий. Кроме того после термической обработки до
600 °С наблюдается образование двух фаз: твердого раствора TiN и аморфной или квазиамор-
фной фазы α-SiNх(Si3N4). В ходе экспериментов размер зерна не изменился, а дополнительная
термическая обработка способствовала завершению спинодальный (фазовой) сегрегации.
СТРУКТУРА, ВЛАСТИВОСТІ ТА МОРФОЛОГІЯ ТВЕРДИХ
НАНОСТРУКТУРОВАНИХ ПОКРИТТІВ Ti-Si-N
М.В. Каверін, Б. Жоллибеков
У роботі представлений порівняльний аналіз результатів, отриманих на зразках нанострукту-
рованих покриттів Ti-Si-N. Елементний склад, дефектна структура, концентрація елементів за
глибиноюпокриття та морфологія плівок були досліджені з використанням таких методів як
пучок повільних позитронів (SPB), рентгенівської фотоелектронної спектроскопії (РФЕС), резер-
фордівського зворотнього розсіювання (RBS), протонного мікропучка (µ-PIXE), рентгенострук-
турного аналізу (РСА), скануючої електронної мікроскопії з енергодисперсійним аналізом (SEM
з EDS). Результати зазначених вище експериментів показали, що змінювання потенціалу підклад-
ки під час нанесення покриттів призводить до змінювання стехіометрії та морфології одержаних
покриттів. Крім того після термічної обробки при 600 °С спостерігається утворення двох фаз:
твердого розчину TiN та аморфної або квазіаморфної фази α-SiNх(Si3N4). У ході експериментів
розмір зерна не змінився, а додаткова термічна обробка сприяла завершенню спінодальної
(фазової) сегрегації.
Kaverin M.V., Zhollybekov B., 2013
ФІП ФИП PSE, 2013, т. 11, № 3, vol. 11, No. 3264
resistance belongs to such materials [9 – 11]. There
is a large variety of different coating’s systems, but
Ti-Si-N coatings stand separately due to its unique
properties and characteristics. That is why it is very
important to study such nanostructure coatings and
to obtain new information about structure of defects,
phase composition, physical and mechanical pro-
perties, and this task seems to be an actual problem
of modern physics of solids.
It is well known from literature [3, 5], that adding
of Si to the TiN coating leads to increasing of the
coating’s hardness and temperature resistance. At a
specified concentration of Si, which equals to (5 ÷
12)% it also leads to forming of two-phases com-
posite with TiN and α-SiNx phases.
EXPERIMENT DETAILS
We used a Cathodic-Arc-Vapor-Deposition device
“Bulat –3T” with HF generator [3, 5]. Potential bias
was applied to the substrate from HF generator of
pulsed damped oscillations, it frequency was less
than 1 MHz. The duration of each pulse was 60 µs;
repetition rate was about 10 kHz. The amount of
negative self-bias potential of the substrate caused
by HF diode effect was 2 ÷ 3 kV. Using steel 3
samples (2 mm thickness, 20 mm diameter, polished
surface), we deposited coatings on the device with
cathodic vacuum-arc vaporizer in high-frequency
discharge (two cathodes, made of Ti and Si). Atomic
Nitrogen was injected into the chamber. Thickness
of the obtained coating was near 2.2 µm.
For TiN coatings fabrication we used Ti of the
grade BT-1-00. Thickness of all coatings was
2.2 µm. Deposition parameters are presented in the
tabl. 1.
Phase composition and structure researching
were provided on the X-ray diffractometer DRON-
3M in CuKα irradiation using graphite monochro-
mator in secondary beam. Diffraction spectrums
were obtained in pointwise regime with a scanning
step 2 = 0.05 … 0.10. For stress analysis, we used
X-ray tensometry (“α-sin2 ψ”-method) and its mo-
difications, which are valid for coatings with strong
axial type texture [12, 13].
Elementary composition of the coatings was stu-
died using Rutherford backscattering of 4He+ ions
with 1.7 MeV energy, detector resolution E = 13
keV, dispersion angle ≈1700. Also we used scan-
ning electron microscopy (SEM) with energy dis-
persion analysis (Jeol 7000F microscope, Japan) in
contrast of electrons and in direct and backscattering
electron reflection. For surface morphology inves-
tigations, we used atomic-force microscopy AFM
Objective to obtain 3D image of surface topography,
electron-ion scanning microscope Quanta 200 3D
with roentgen-fluorescent microanalyzer EDAX with
appropriate software, and automatic contact preci-
sion profilometer SURTRONIC 25.
Nanohardness and elastic modulus measure-
ments were done using trihedral Berkovich indentor
(Nano Indenter G200, TN, USA, Oak Ridge, Nano
Instruments Innovation Center). For analysis of
vacancy-type defects in the coating we used slow
positron beam (Halle, Germany). We measured S-
parameter of the Doppler broadening annihilation
peak (DBAP) by changing energy of the fallen po-
sitron beam from 1 KeV to 30 KeV, and that allo-
wed us to change the analysis depth [14,15].
The bonding states were determined using pho-
toelectron spectroscopy (XPS, Kratos AXIS Ultra)
with a monochromatic AlK (1486.71 eV, X-ray ra-
diation 15 kV/10 mA).
EXPERIMENTAL RESULTS AND
DISCUSSION
Fragments of diffraction spectrums for Ti-Si-N
samples (as deposited and after annealing under the
temperature 600 °C for 30 min) are presented on
fig. 1. We calculated lattice parameter a0 = 0.42462
A and found strong texture (111) (Ti, Si) N and
(222) (Ti, Si) N (see curves 1 and 2).
In addition, we detected small peaks from TiO2
(JCPDS-19-370). Volume fraction of oxides after
thermal annealing in the chamber is low and it is not
higher than 5%.
Stresses analysis showed, that there is high
compression deformation in (Ti, Si)N hard solution
Table 1
Physical and technical parameters of
deposition of coatings
Deposited
material Coating I, A PN,
Pa
Uhv,
V
Ub, B Remarks
Ti TiN 90 0.3 200 200
Pulse high-
frequency
technology
Ti + Si Ti-Si-N 100 0.3 200 –
Pulse high-
frequency
technology
Ti + Si Ti-Si-N 100 0.7 200 –
Pulse high-
frequency
technology
STRUCTURE, PROPERTIES AND MORPHOLOGY OF NANOSTRUCTURED COATINGS SOLID Ti-Si-N
265
(equals to – 2.6%) and it is reduced to the value of
– 2.3% after annealing.
Coherent-scattering region evaluation (using
Sherrer methodic) showed that size of nanograins
increased from 12.5 nm to 13 nm, and when initial
size of nanograins is 25 nm, it increased to (28 ÷
30) nm. In other words, due to annealing under the
temperature of 600 °C for 30 minutes, insignificant
changing of grain size is observed, and rest part of
energy was used on finishing of spinodal segregation
process, forming of monolayer α-Si3N4.
We can make an interim conclusion, that when
compression deformation and order of structuring
are high, annealing under the temperature of
600 °C for 30 minutes do not lead to catastrophic
changes both in phase composition, structure and
mode of deformation. Layer, made of (Ti, Si)N solid
solution, is formed, and silicon-nitrogen phase is also
formed around nanograins. In according to it, Si
concentration is reduced in solid solution; some
amount of Ti atoms creates TiO2 film on the coating’s
surface. Ti-Si-N coatings structure is characterized
by high level of microdeformations of lattice (more
than 1%) [9]. High value of microdeformations of
lattice probably indicates on inhomogeneity of
chemical structure in every phase of the coating.
Coatings have strong texture [6]. Condensation
compressive stresses leads to (111) texture forming
in (Ti, Si)N solid solution films. Using approximation
methods we defined average crystallites sizes of the
(Ti, Si)N solid solution, and it varies from 12.5 to
25 nm. The obtained coatings have next hardness:
TiN (H = 28 GPa, E = 312 GPa); Ti-Si-N (H = 38
÷ 39 GPa, E = 356 GPa).
In tabl. 2, we summarized results of tribological
investigations. It is clearly seen from this results, that
wear coefficient for TiN coating increases with tem-
perature increasing, but for Ti-Si-N coating wear
coefficient decreases to 0.69 (T = 500 °C), which
is approximately on 25% less, than under room
temperature.
Elementary analysis results are presented on
fig. 2, it was obtained using RBS method and EDS
(energy-dispersion spectroscopy). As it is clearly
seen from fig. 2a), Si concentration is less than 5
at.%, N concentration ≈ (35 ÷ 40) at.%, rest one is
Ti, and for fig. 2b) N concentration ≈ 50 at.%, Ti ≈
44 at.%, Si ≈ 5.5 at.%. Coating’s thickness equals
to 2.18 ± 0.01 µm in according to RBS data.
Fig. 1. Ti-Si-N coating’s X-ray diffraction patterns: 1) as
deposited; 2) after annealing under the temperature
600 °C for 30 min, vacuum P = 50 mbar.
Table 2
Tribological properties of nanocomposite
coatings
Coating Tempera-
ture, °C
Wear fac-
tor, coa-
ting,
mm3/nm
Friction
coefficient
Wear coun-
ter body
mm3/nm
Ti-Si-N
30 7.69⋅10–5 3.28⋅10–5 0.88
300 2.63⋅10–5 3.49⋅10–5 0.82
600 1.95⋅10–5 2.75⋅10–5 0.69
TiN
30 6.75⋅10–5 3.30⋅10–5 0.81
300 3.62⋅10–5 3.51⋅10–5 0.87
600 5.16⋅10–5 3.83⋅10–5 0.91
a)
b)
M.V. KAVERIN, B. ZHOLLYBEKOV
ФІП ФИП PSE, 2013, т. 11, № 3, vol. 11, No. 3
ФІП ФИП PSE, 2013, т. 11, № 3, vol. 11, No. 3266
RBS data confirms by EDX results, see fig. 2c).
Concentration of Si in the coating is 2.62 at.%, Ti
≈40.69 at.%, N ≈ 55.92 at.%. For another series
of samples (with Si concentration ≥ 5.8 at.%) we
provided investigations of Si-Nx connection using
XPS analysis. It showed high peak on 101.9 eV,
and it points directly on forming of Si-Nx connection
in this sample. But also we had a small peak, which
points on forming of a very few amount of Si-O on
103.9 eV (after annealing in the air under the tem-
perature of 600 °C for 30 min). Additional µ-PIXE
investigations showed SiN forming on TiN nano-
grains borders.
Images of the coating’s surface before and after
annealing, under the temperature 600 °C (for 30
min.) are presented on fig. 3. We can observe flat
“drops” of melted phase, no matter of HF stimu-
lation. We should note that part of plasma jet con-
sists of drop fractions, and we did not make analysis
of such fractions.
To obtain a real thickness of Ti-Si-N nanostruc-
ture coating and to norm the depth of slow positron
beam analysis, we cut a circle hole, through the coa-
ting thickness. As it is seen from fig. 3c), coating’s
thickness equals to 2.39 ÷ 2.41 µm. Calculation of
positrons penetration depth shows that Emax =
20 keV, it corresponds to 2.11 µm of thickness.
Even if we will take into account diffusion of ther-
malized positrons (it length is L ≈ 100 nm), we will
see that positron beam cannot reach interface
between coating and substrate. That is why profiles
of mean positron’s penetration depths give us in-
formation about vacancy-type defects on the whole
thickness of Ti-Si-N coating, but the interface border
is not really achieved by them.
c)
d)
Fig. 2. Energy spectrums for samples with Ti-Si-N coa-
tings; (a) bias potential –50 V, PN = 0.5 Pa (RBS), second
curve corresponds to etalon SiW curve (for comparing);
(b) bias potential –100 V, PN = 0.7 Pa (RBS); (c) bias po-
tential –50 V, PN = 0.5 Pa (EDX); (d) XPS spectra obtained
from Ti-Si-N coating.
a)
b)
c)
Fig. 3. Surface topography of the Ti-Si-N coating; (a) as
deposited state; (b) after annealing under the temperature
of 600 °C; (c) SEM-analysis of circle cross-section, which
was obtained using ion beam cutting.
STRUCTURE, PROPERTIES AND MORPHOLOGY OF NANOSTRUCTURED COATINGS SOLID Ti-Si-N
267
Positron annihilation method is the most effective,
responsive and reliable method of analysis of free
volumes in nanocrystalline materials (it has possible
interval of defect’s analysis in the range 10–6 ± 10–3
defects per atom) [14, 15]. Part of positrons can
be captured on the interface of two neighboring
nanograins or on boundary junction of three neigh-
boring nanocrystals. It gives us good opportunity to
solve one of the most complicated and interesting
problems of nanomaterials to understand structure
(including electron structure) of the interfaces bet-
ween nanograins, because length (volume) of such
interfaces influences a lot on properties of nano-
composite coatings [1 − 9].
Fig. 4 shows dependence of S-parameter on
energy, in other words, we can see profiles of defects
in Ti-Si-N coating before (black curve) and after
(red curve) thermal annealing under the temperature
of 600 °C (30 min).
Significant changes in electron and defect struc-
ture of the coating is clearly seen from this figure.
We should note, that defects concentration increases
on the whole thickness of the coating, all positrons
locates and annihilates on defects, which are situated
on the boundaries of nanograins. Depth of diffusion
of thermalized positrons is ≈100 nm, size of nano-
grains is (12.5 ÷ 13) nm, so we can say that almost
all positrons are captured on interface’s defects. As
approaching to the interface between coating and
substrate, S-parameter significantly increases, i.e.
defects also migrate to the interface between coating
and substrate due to thermal diffusion. Thickness
of this transition layer of defects is no more than
250 nm. Calculation of vacancy defects concentra-
tion was done using positron capture model with
two types of vacancy defects [12], and it showed
that defects concentration increases after annealing
from 5⋅1016 to 7.5⋅1017 cm–3, thermally activated
vacancies concentration also increases from 1⋅1016
to 5⋅1018 cm–3 (see red curve).
Loading and unloading curves are presented on
fig. 5.
Nanoindentor penetrates on the surface layer of
the Ti-Si-N coating (three different loadings). As it
is seen from calculations, based on Oliver-Pharr
methodic, an average hardness for such deposition
regimes is 38.7 GPa, elasticity modulus is 370 ±
12 GPa. Annealing under the temperature of 600
°C in vacuum leads to increasing of elasticity modulus
to values (430 − 448) GPa, it is connected with
finishing of process of spinodal segregation on the
boundaries of nanograins, i.e. with forming of thin
SiN (Si3N4) interlayer (amorphous and quasi
amorphous phases).
Fig. 4. Dependence of S-parameter on energy of positron
microbeam (black curve as deposited coating, red curve
annealed coating).
Fig. 5. Loading and unloading curves, obtained for
Ti-Si-N coating (U = –100 V, Pn = 0.7 Pa), indentation on
50, 100 and 150 nm depth.
a)
M.V. KAVERIN, B. ZHOLLYBEKOV
ФІП ФИП PSE, 2013, т. 11, № 3, vol. 11, No. 3
ФІП ФИП PSE, 2013, т. 11, № 3, vol. 11, No. 3268
Fig. 6 shows a surface topography of Ti-Si-N
nanostructured coatings. On the surface region of
25×25 µm can be seen a variation in depths.
Moreover, thermal annealing under the tempe-
rature of 600 °C in vacuum also changes Ti-Si-N
coating’s surface morphology (fig. 7).
We observed decreasing of an average rough-
ness size, increasing of amount of defects (it is
obvious from fig. 6).
After analysis we can say, that structure of defects
changes on nanograins interfaces due to annealing,
average roughness size decreases, nanohardness
increases on 20% (in comparison with as deposited
state) and it correlates with our previous works [13,
16]. Friction ratio decreases on 25% it is the main
difference as opposed to works [17 – 19].
ACKNOWLEDGEMENTS
Authors thanks A.D. Pogrebnjak (Sumy, Ukraine)
for measuring of profiles defects using slow positron
beam, G. Abrasonis (Dresden, Germany) for ele-
ments’ composition studies using RBS-analysis,
V.M. Beresnev (Kharkov, Ukraine), D.A. Koles-
nikov (Belgorod, Russia) and R. Krause-Rehberg
(Halle, Germany). The work was done under fi-
nancial support of Ministry of Education and Science
of Ukraine (state program, order No. 411), and in
collaboration with NIMS (Tsukuba, Japan) and
Martin-Luther University (Dresden, Germany). The
work was supported by Ministry of Education and
Science of Ukraine (project No. 011U001382).
Authors are grateful to the staff of the Joint Research
Center “Diagnostics of Structure and Properties of
Nanomaterials” (Belgorod State University, Russia)
for their assistance with instrumental analysis.
REFERENCES
1. Gleiter Н. Nanocrystalline materials//Progress in
Materials Science. − 989.− Vol. 33.− P. 233-315.
2. Siegel R.W. Cluster-Assembled Nanophase Ma-
terials//Annual Review of Materials Science. −
1991. − Vol. 21. − P. 559-579.
3. Veprek S., Reiprich S.A. Concept for the design
of novel superhard coatings//Thin Solid Films. −
1995. − Vol. 268. − P. 64-71.
4. Pogrebnyak A.D., Shpak A.P., Azarenkov N.A.,
Beresnev V.M. Structures and properties of hard
and superhard nanocomposite coatings//Physics-
Uspekhi. −2009. − Vol. 52. − P. 29-54.
5. Mayrhofer P.H., Mitterer C., Hultman L., Cle-
mens H. Microstructural design of hard coatings
//Progress in Materials Science. − 2006. −
Vol. 51. − P. 1032-1114.
6. Musil J. Hard and superhard nanocomposite coa-
tings//Surface and Coatings Technology. − 2000.
− Vol. 125. − P. 322-330.
STRUCTURE, PROPERTIES AND MORPHOLOGY OF NANOSTRUCTURED COATINGS SOLID Ti-Si-N
Fig. 6. An image of the surface topography of Ti-Si-N
coating: a) – the surface area of 25×25 мm; b) – profilo-
gram of Ti-Si-N coating from 100 to 900 nm roughness.
a)
b)
Fig. 7. Ti-Si-N coating’s surface morphology: (a) 3d AFM
image; (b) after annealing under the temperature of
600 °C.
b)
269
7. Andrievski R.A. Nanomaterials based on high-
melting carbides, nitrides and borides//Russian
Chemestri Reviews. − 2005. − Vol. 74. − P. 1061-
1072.
8. Musil J. Hard nanocomposite coatings: Thermal
stability, oxidation resistance and toughness//
Surface and Coatings Technology. − 2012. −
Vol. 207. − P. 50-65.
9. Pogrebnjak A.D., Ponomarev A.G., Shpak A.P.,
Kunitskii Yu.A. Application of micro- and nano-
probes to the analysis of small-sized 3D materials,
nanosystems, and nanoobjects//Physics-Uspekhi.
− 2012. − Vol. 55. − P. 270-300.
10. Pogrebnjak A., Danilionok M., Uglov V., Erdy-
baeva N., Kirik G., Dub S., Rusakov V., Shypy-
lenko A., Zukovski P., Tuleushev Y. Nanocom-
posite Protective Coatings Based on Ti-N-Cr/Ni-
Cr-B-Si-Fe, Their Structure and properties//Va-
cuum. − 2009. − Vol. 83. − P. 235-239.
11. Pogrebnjak A.D., Uglov V.V., Il’yashenko M.V.,
Beresnev V.M., Shpak A.P., Kaverin M.V., Er-
dybaeva N.K., Kunitskii Yu.A., Tyurin Yu.N., Ko-
lisnichenko O.V., Makhmudov N.A., and Shy-
pylenko A.P. Nano-Microcomposite and Com-
bined Coatings on Ti-Si-NAA/C-Co-Cr/Steel and
Ti-Si-N/(Cr3C2)75-(NiCr)25Base: Their Structure
and Properties. Nanostructured Materials and
Nanotechnology IV//Ceramic Engineering and
Science Proceedings. − 2010. − Vol. 31. −
P. 127-138.
12. Lavrent’ev V.I., Pogrebnyak A.D., Shandrik R.
‘Evolyuciya vakansionnyh defektov v poverh-
nostnyh sloyah metalla pri impul’snom vozdejstvii
‘elektronnym puchkom //Pis’ma v Zh‘ETF. −
1997. − № 65. − P. 618-622.
13. Rempel’S.V., Gusev A.I. Poverhnostnaya segre-
gaciya v raspadayuschihsya karbidnyh tverdyh
rastvorah//Pis’ma v Zh‘ETF. − 2008. − № 88. −
P. 508-513.
14. Krause-Rehberg R., Leipner H.S. Positron Anni-
hilation in Semiconductors: Defect Studies. −
New York: Springer-Verlag Berlin Heidelberg,
2003. − 387 p.
15. Pogrebnjak A.D., Il’yashenko M.V., Kave-
rin M.V., Shypylenko A.P., Pshyk A.V., Beres-
nev V.M., Kirik G.V., Erdybayeva N.K., Makh-
mudov N.A., Kolisnichenko O.V., Tyurin Yu.N.,
Shpak A.P. Physical And Mechanical Properties
of The Nanocomposite And Combined Ti-N-Si /
WC-Co-Cr/ and Ti-N-Si/(Cr3C2)75-(NiCr)25 Coa-
tings//Journal of Nano- and Electronic Physics.
− 2009. − Vol. 1. − P. 66-77.
16. Pogrebnjak A.D., Mahmud A.M., Karasha I.T.,
Kirik G.V., Tkachenko R.Y., Shypylenko A.P.
Structure аnd Physical-Mechanical Properties of
nc-TiN Coatings Obtained by Vacuum-Arc De-
position and Deposition of HF Discharg//Journal
of Nano- and Electronic Physics.− 2011.−Vol. 3.
− P. 97-105.
17. Pogrebnjak A.D., Ruzimov Sh.M., Alontse-
va D.L., Zukowski P., Karwat C., Kozak С., Ko-
lasik M. Structure and properties of coatings on
Ni base deposited using a plasma jet before and
after electron a beam irradiation//Vacuum. −
2007. − Vol. 81. − P. 1243.
18. Sobol’ O.V., Pogrebnjak A.D., Beresnev V.M.
Effect of the Preparation Conditions on Phase
Composition, Structure, and Mechanical Charac-
teristics of Vacuum-Arc Zr-Ti-Si-N Coatings//
Phys. Met. Metallogr.− 2011.− Vol. 112. − P. 188.
19.Pogrebnjak A.D., Shpak A.P., Beresnev V.M.,
Kolesnikov D.A., Kunitskii Yu.A., Sobol O.V.,
Uglov V.V., Komarov F.F., Shypylenko A.P.,
Makhmudov N.A., Demyanenko A.A., Bai-
dak V.S., and Grudnitskii V.V.. Effect of Thermal
Annealing in Vacuum and in Air on Nanograin
Sizes in Hard and Superhard Coatings Zr–Ti-Si-
N//Journal of Nanoscience and Nanotechnology.
− 2012. − Vol. 12.
M.V. KAVERIN, B. ZHOLLYBEKOV
ФІП ФИП PSE, 2013, т. 11, № 3, vol. 11, No. 3
|