Structure, properties and morphology of nanostructured coatings solid Ti-Si-N

The work presents a comparative analysis of results obtained from samples of nanostructured Ti-Si-N coatings. Element composition, defect structure, concentration of elements throughout the depth of coating and morphology of films were studied using the techniques of slow positron beam (SPB),...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Физическая инженерия поверхности
Дата:2013
Автори: Zhollybekov, B., Kaverin, M.V.
Формат: Стаття
Мова:English
Опубліковано: Науковий фізико-технологічний центр МОН та НАН України 2013
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/100310
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Structure, properties and morphology of nanostructured coatings solid Ti-Si-N/ M.V. Kaverin, B. Zhollybekov // Физическая инженерия поверхности. — 2013. — Т. 11, № 3. — С. 263–269. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-100310
record_format dspace
spelling Zhollybekov, B.
Kaverin, M.V.
2016-05-19T15:48:45Z
2016-05-19T15:48:45Z
2013
Structure, properties and morphology of nanostructured coatings solid Ti-Si-N/ M.V. Kaverin, B. Zhollybekov // Физическая инженерия поверхности. — 2013. — Т. 11, № 3. — С. 263–269. — Бібліогр.: 19 назв. — англ.
1999-8074
PACS NUMBER: 61.05.CM, 61.46.HK, 62.20.QP.68.37.HK, 81.15.-Z
https://nasplib.isofts.kiev.ua/handle/123456789/100310
The work presents a comparative analysis of results obtained from samples of nanostructured Ti-Si-N coatings. Element composition, defect structure, concentration of elements throughout the depth of coating and morphology of films were studied using the techniques of slow positron beam (SPB), X-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectrometry (RBS), proton microbeam (µ-PIXE), X-ray diffraction (XRD), scanning electron microscopy with energy − dispersive analysis (SEM with EDS). Results of mentioned above experiments showed that changing the substrate potential during deposition of coatings the stoichiometry and morphology of obtained coatings changes too. After thermal treatment up to 600 °C the formation of two phases: solid solution of TiN, and amorphous or quasi-amorphous α-SiNx (Si₃N₄) envelope was observed. During experiments the grain size did not change significantly, while the extra energy was used for the completion of the spinodal (phase) segregation.
В работе представлен сравнительный анализ результатов, полученных на образцах наноструктурированных покрытий Ti-Si-N. Элементный состав, дефектная структура, концентрация элементов по глубине покрытия и морфология пленок были изучены с использованием таких методов как пучок медленных позитронов (SPB), рентгеновской фотоэлектронной спектроскопии (РФЭС), резерфордовского обратного рассеяния (RBS), протонного микропучка (µ-PIXE), рентгеноструктурного анализа (РСА), сканирующей электронной микроскопии с энергодисперсионным анализом (SEM с EDS). Результаты указанных выше экспериментов показали, что изменение потенциала подложки во время нанесения покрытий приводит к изменению стехиометрии и морфологии получаемых покрытий. Кроме того после термической обработки до 600 °С наблюдается образование двух фаз: твердого раствора TiN и аморфной или квазиаморфной фазы α-SiNх (Si₃N₄). В ходе экспериментов размер зерна не изменился, а дополнительная термическая обработка способствовала завершению спинодальный (фазовой) сегрегации.
У роботі представлений порівняльний аналіз результатів, отриманих на зразках наноструктурованих покриттів Ti-Si-N. Елементний склад, дефектна структура, концентрація елементів за глибиноюпокриття та морфологія плівок були досліджені з використанням таких методів як пучок повільних позитронів (SPB), рентгенівської фотоелектронної спектроскопії (РФЕС), резерфордівського зворотнього розсіювання (RBS), протонного мікропучка (µ-PIXE), рентгеноструктурного аналізу (РСА), скануючої електронної мікроскопіїз енергодисперсійним аналізом (SEM з EDS). Результати зазначених вище експериментів показали, що змінювання потенціалу підкладки під час нанесення покриттів призводить до змінювання стехіометрії та морфології одержаних покриттів. Крім того після термічної обробки при 600 °С спостерігається утворення двох фаз: твердого розчину TiN та аморфної або квазіаморфної фази α-SiNх (Si₃N₄). У ході експериментів розмір зерна не змінився, а додаткова термічна обробка сприяла завершенню спінодальної (фазової) сегрегації.
Authors thanks A.D. Pogrebnjak (Sumy, Ukraine) for measuring of profiles defects using slow positron beam, G. Abrasonis (Dresden, Germany) for elements’ composition studies using RBS-analysis, V.M. Beresnev (Kharkov, Ukraine), D.A. Kolesnikov (Belgorod, Russia) and R. Krause-Rehberg (Halle, Germany). The work was done under financial support of Ministry of Education and Science of Ukraine (state program, order No. 411), and in collaboration with NIMS (Tsukuba, Japan) and Martin-Luther University (Dresden, Germany). The work was supported by Ministry of Education and Science of Ukraine (project No. 011U001382). Authors are grateful to the staff of the Joint Research Center “Diagnostics of Structure and Properties of Nanomaterials” (Belgorod State University, Russia) for their assistance with instrumental analysis.
en
Науковий фізико-технологічний центр МОН та НАН України
Физическая инженерия поверхности
Structure, properties and morphology of nanostructured coatings solid Ti-Si-N
Структура, свойства и морфология твердых наноструктурированных покрытий Ti-Si-N
Структура, властивості та морфологія твердих наноструктурованих покриттів Ti-Si-N
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Structure, properties and morphology of nanostructured coatings solid Ti-Si-N
spellingShingle Structure, properties and morphology of nanostructured coatings solid Ti-Si-N
Zhollybekov, B.
Kaverin, M.V.
title_short Structure, properties and morphology of nanostructured coatings solid Ti-Si-N
title_full Structure, properties and morphology of nanostructured coatings solid Ti-Si-N
title_fullStr Structure, properties and morphology of nanostructured coatings solid Ti-Si-N
title_full_unstemmed Structure, properties and morphology of nanostructured coatings solid Ti-Si-N
title_sort structure, properties and morphology of nanostructured coatings solid ti-si-n
author Zhollybekov, B.
Kaverin, M.V.
author_facet Zhollybekov, B.
Kaverin, M.V.
publishDate 2013
language English
container_title Физическая инженерия поверхности
publisher Науковий фізико-технологічний центр МОН та НАН України
format Article
title_alt Структура, свойства и морфология твердых наноструктурированных покрытий Ti-Si-N
Структура, властивості та морфологія твердих наноструктурованих покриттів Ti-Si-N
description The work presents a comparative analysis of results obtained from samples of nanostructured Ti-Si-N coatings. Element composition, defect structure, concentration of elements throughout the depth of coating and morphology of films were studied using the techniques of slow positron beam (SPB), X-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectrometry (RBS), proton microbeam (µ-PIXE), X-ray diffraction (XRD), scanning electron microscopy with energy − dispersive analysis (SEM with EDS). Results of mentioned above experiments showed that changing the substrate potential during deposition of coatings the stoichiometry and morphology of obtained coatings changes too. After thermal treatment up to 600 °C the formation of two phases: solid solution of TiN, and amorphous or quasi-amorphous α-SiNx (Si₃N₄) envelope was observed. During experiments the grain size did not change significantly, while the extra energy was used for the completion of the spinodal (phase) segregation. В работе представлен сравнительный анализ результатов, полученных на образцах наноструктурированных покрытий Ti-Si-N. Элементный состав, дефектная структура, концентрация элементов по глубине покрытия и морфология пленок были изучены с использованием таких методов как пучок медленных позитронов (SPB), рентгеновской фотоэлектронной спектроскопии (РФЭС), резерфордовского обратного рассеяния (RBS), протонного микропучка (µ-PIXE), рентгеноструктурного анализа (РСА), сканирующей электронной микроскопии с энергодисперсионным анализом (SEM с EDS). Результаты указанных выше экспериментов показали, что изменение потенциала подложки во время нанесения покрытий приводит к изменению стехиометрии и морфологии получаемых покрытий. Кроме того после термической обработки до 600 °С наблюдается образование двух фаз: твердого раствора TiN и аморфной или квазиаморфной фазы α-SiNх (Si₃N₄). В ходе экспериментов размер зерна не изменился, а дополнительная термическая обработка способствовала завершению спинодальный (фазовой) сегрегации. У роботі представлений порівняльний аналіз результатів, отриманих на зразках наноструктурованих покриттів Ti-Si-N. Елементний склад, дефектна структура, концентрація елементів за глибиноюпокриття та морфологія плівок були досліджені з використанням таких методів як пучок повільних позитронів (SPB), рентгенівської фотоелектронної спектроскопії (РФЕС), резерфордівського зворотнього розсіювання (RBS), протонного мікропучка (µ-PIXE), рентгеноструктурного аналізу (РСА), скануючої електронної мікроскопіїз енергодисперсійним аналізом (SEM з EDS). Результати зазначених вище експериментів показали, що змінювання потенціалу підкладки під час нанесення покриттів призводить до змінювання стехіометрії та морфології одержаних покриттів. Крім того після термічної обробки при 600 °С спостерігається утворення двох фаз: твердого розчину TiN та аморфної або квазіаморфної фази α-SiNх (Si₃N₄). У ході експериментів розмір зерна не змінився, а додаткова термічна обробка сприяла завершенню спінодальної (фазової) сегрегації.
issn 1999-8074
url https://nasplib.isofts.kiev.ua/handle/123456789/100310
citation_txt Structure, properties and morphology of nanostructured coatings solid Ti-Si-N/ M.V. Kaverin, B. Zhollybekov // Физическая инженерия поверхности. — 2013. — Т. 11, № 3. — С. 263–269. — Бібліогр.: 19 назв. — англ.
work_keys_str_mv AT zhollybekovb structurepropertiesandmorphologyofnanostructuredcoatingssolidtisin
AT kaverinmv structurepropertiesandmorphologyofnanostructuredcoatingssolidtisin
AT zhollybekovb strukturasvoistvaimorfologiâtverdyhnanostrukturirovannyhpokrytiitisin
AT kaverinmv strukturasvoistvaimorfologiâtverdyhnanostrukturirovannyhpokrytiitisin
AT zhollybekovb strukturavlastivostítamorfologíâtverdihnanostrukturovanihpokrittívtisin
AT kaverinmv strukturavlastivostítamorfologíâtverdihnanostrukturovanihpokrittívtisin
first_indexed 2025-11-24T20:12:58Z
last_indexed 2025-11-24T20:12:58Z
_version_ 1850494901938028544
fulltext 263 INTRODUCTION One of the most important problems of modern materials science is fabrication and construction of new materials with unique functional properties [1– 8]. Nanostructure materials with high hardness, ela- sticity modulus, thermal stability, wear and corrosion PACS NUMBER: 61.05.CM, 61.46.HK, 62.20.QP.68.37.HK, 81.15.-Z STRUCTURE, PROPERTIES AND MORPHOLOGY OF NANOSTRUCTURED COATINGS SOLID Ti-Si-N M.V. Kaverin1, B. Zhollybekov2 1Sumy State University Ukraine 2Karakalpak State University (Nukus) Uzbekistan Received 12.08.2013 The work presents a comparative analysis of results obtained from samples of nanostructured Ti-Si-N coatings. Element composition, defect structure, concentration of elements throughout the depth of coating and morphology of films were studied using the techniques of slow positron beam (SPB), X-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectrometry (RBS), proton microbeam (µ-PIXE), X-ray diffraction (XRD), scanning electron microscopy with energy − dispersive analysis (SEM with EDS). Results of mentioned above experiments showed that changing the substrate potential during deposition of coatings the stoichiometry and morphology of obtained coatings changes too. After thermal treatment up to 600 °C the formation of two phases: solid solution of TiN, and amorphous or quasi-amorphous α-SiNx (Si3N4) envelope was observed. During experiments the grain size did not change significantly, while the extra energy was used for the completion of the spinodal (phase) segregation. СТРУКТУРА, СВОЙСТВА И МОРФОЛОГИЯ ТВЕРДЫХ НАНОСТРУКТУРИРОВАННЫХ ПОКРЫТИЙ Ti-Si-N М.В. Каверин, Б. Жоллыбеков В работе представлен сравнительный анализ результатов, полученных на образцах нанострук- турированных покрытий Ti-Si-N. Элементный состав, дефектная структура, концентрация эле- ментов по глубине покрытия и морфология пленок были изучены с использованием таких мето- дов как пучок медленных позитронов (SPB), рентгеновской фотоэлектронной спектроскопии (РФЭС), резерфордовского обратного рассеяния (RBS), протонного микропучка (µ-PIXE), рент- геноструктурного анализа (РСА), сканирующей электронной микроскопии с энергодисперси- онным анализом (SEM с EDS). Результаты указанных выше экспериментов показали, что из- менение потенциала подложки во время нанесения покрытий приводит к изменению стехио- метрии и морфологии получаемых покрытий. Кроме того после термической обработки до 600 °С наблюдается образование двух фаз: твердого раствора TiN и аморфной или квазиамор- фной фазы α-SiNх(Si3N4). В ходе экспериментов размер зерна не изменился, а дополнительная термическая обработка способствовала завершению спинодальный (фазовой) сегрегации. СТРУКТУРА, ВЛАСТИВОСТІ ТА МОРФОЛОГІЯ ТВЕРДИХ НАНОСТРУКТУРОВАНИХ ПОКРИТТІВ Ti-Si-N М.В. Каверін, Б. Жоллибеков У роботі представлений порівняльний аналіз результатів, отриманих на зразках нанострукту- рованих покриттів Ti-Si-N. Елементний склад, дефектна структура, концентрація елементів за глибиноюпокриття та морфологія плівок були досліджені з використанням таких методів як пучок повільних позитронів (SPB), рентгенівської фотоелектронної спектроскопії (РФЕС), резер- фордівського зворотнього розсіювання (RBS), протонного мікропучка (µ-PIXE), рентгенострук- турного аналізу (РСА), скануючої електронної мікроскопії з енергодисперсійним аналізом (SEM з EDS). Результати зазначених вище експериментів показали, що змінювання потенціалу підклад- ки під час нанесення покриттів призводить до змінювання стехіометрії та морфології одержаних покриттів. Крім того після термічної обробки при 600 °С спостерігається утворення двох фаз: твердого розчину TiN та аморфної або квазіаморфної фази α-SiNх(Si3N4). У ході експериментів розмір зерна не змінився, а додаткова термічна обробка сприяла завершенню спінодальної (фазової) сегрегації.  Kaverin M.V., Zhollybekov B., 2013 ФІП ФИП PSE, 2013, т. 11, № 3, vol. 11, No. 3264 resistance belongs to such materials [9 – 11]. There is a large variety of different coating’s systems, but Ti-Si-N coatings stand separately due to its unique properties and characteristics. That is why it is very important to study such nanostructure coatings and to obtain new information about structure of defects, phase composition, physical and mechanical pro- perties, and this task seems to be an actual problem of modern physics of solids. It is well known from literature [3, 5], that adding of Si to the TiN coating leads to increasing of the coating’s hardness and temperature resistance. At a specified concentration of Si, which equals to (5 ÷ 12)% it also leads to forming of two-phases com- posite with TiN and α-SiNx phases. EXPERIMENT DETAILS We used a Cathodic-Arc-Vapor-Deposition device “Bulat –3T” with HF generator [3, 5]. Potential bias was applied to the substrate from HF generator of pulsed damped oscillations, it frequency was less than 1 MHz. The duration of each pulse was 60 µs; repetition rate was about 10 kHz. The amount of negative self-bias potential of the substrate caused by HF diode effect was 2 ÷ 3 kV. Using steel 3 samples (2 mm thickness, 20 mm diameter, polished surface), we deposited coatings on the device with cathodic vacuum-arc vaporizer in high-frequency discharge (two cathodes, made of Ti and Si). Atomic Nitrogen was injected into the chamber. Thickness of the obtained coating was near 2.2 µm. For TiN coatings fabrication we used Ti of the grade BT-1-00. Thickness of all coatings was 2.2 µm. Deposition parameters are presented in the tabl. 1. Phase composition and structure researching were provided on the X-ray diffractometer DRON- 3M in CuKα irradiation using graphite monochro- mator in secondary beam. Diffraction spectrums were obtained in pointwise regime with a scanning step 2 = 0.05 … 0.10. For stress analysis, we used X-ray tensometry (“α-sin2 ψ”-method) and its mo- difications, which are valid for coatings with strong axial type texture [12, 13]. Elementary composition of the coatings was stu- died using Rutherford backscattering of 4He+ ions with 1.7 MeV energy, detector resolution E = 13 keV, dispersion angle ≈1700. Also we used scan- ning electron microscopy (SEM) with energy dis- persion analysis (Jeol 7000F microscope, Japan) in contrast of electrons and in direct and backscattering electron reflection. For surface morphology inves- tigations, we used atomic-force microscopy AFM Objective to obtain 3D image of surface topography, electron-ion scanning microscope Quanta 200 3D with roentgen-fluorescent microanalyzer EDAX with appropriate software, and automatic contact preci- sion profilometer SURTRONIC 25. Nanohardness and elastic modulus measure- ments were done using trihedral Berkovich indentor (Nano Indenter G200, TN, USA, Oak Ridge, Nano Instruments Innovation Center). For analysis of vacancy-type defects in the coating we used slow positron beam (Halle, Germany). We measured S- parameter of the Doppler broadening annihilation peak (DBAP) by changing energy of the fallen po- sitron beam from 1 KeV to 30 KeV, and that allo- wed us to change the analysis depth [14,15]. The bonding states were determined using pho- toelectron spectroscopy (XPS, Kratos AXIS Ultra) with a monochromatic AlK (1486.71 eV, X-ray ra- diation 15 kV/10 mA). EXPERIMENTAL RESULTS AND DISCUSSION Fragments of diffraction spectrums for Ti-Si-N samples (as deposited and after annealing under the temperature 600 °C for 30 min) are presented on fig. 1. We calculated lattice parameter a0 = 0.42462 A and found strong texture (111) (Ti, Si) N and (222) (Ti, Si) N (see curves 1 and 2). In addition, we detected small peaks from TiO2 (JCPDS-19-370). Volume fraction of oxides after thermal annealing in the chamber is low and it is not higher than 5%. Stresses analysis showed, that there is high compression deformation in (Ti, Si)N hard solution Table 1 Physical and technical parameters of deposition of coatings Deposited material Coating I, A PN, Pa Uhv, V Ub, B Remarks Ti TiN 90 0.3 200 200 Pulse high- frequency technology Ti + Si Ti-Si-N 100 0.3 200 – Pulse high- frequency technology Ti + Si Ti-Si-N 100 0.7 200 – Pulse high- frequency technology STRUCTURE, PROPERTIES AND MORPHOLOGY OF NANOSTRUCTURED COATINGS SOLID Ti-Si-N 265 (equals to – 2.6%) and it is reduced to the value of – 2.3% after annealing. Coherent-scattering region evaluation (using Sherrer methodic) showed that size of nanograins increased from 12.5 nm to 13 nm, and when initial size of nanograins is 25 nm, it increased to (28 ÷ 30) nm. In other words, due to annealing under the temperature of 600 °C for 30 minutes, insignificant changing of grain size is observed, and rest part of energy was used on finishing of spinodal segregation process, forming of monolayer α-Si3N4. We can make an interim conclusion, that when compression deformation and order of structuring are high, annealing under the temperature of 600 °C for 30 minutes do not lead to catastrophic changes both in phase composition, structure and mode of deformation. Layer, made of (Ti, Si)N solid solution, is formed, and silicon-nitrogen phase is also formed around nanograins. In according to it, Si concentration is reduced in solid solution; some amount of Ti atoms creates TiO2 film on the coating’s surface. Ti-Si-N coatings structure is characterized by high level of microdeformations of lattice (more than 1%) [9]. High value of microdeformations of lattice probably indicates on inhomogeneity of chemical structure in every phase of the coating. Coatings have strong texture [6]. Condensation compressive stresses leads to (111) texture forming in (Ti, Si)N solid solution films. Using approximation methods we defined average crystallites sizes of the (Ti, Si)N solid solution, and it varies from 12.5 to 25 nm. The obtained coatings have next hardness: TiN (H = 28 GPa, E = 312 GPa); Ti-Si-N (H = 38 ÷ 39 GPa, E = 356 GPa). In tabl. 2, we summarized results of tribological investigations. It is clearly seen from this results, that wear coefficient for TiN coating increases with tem- perature increasing, but for Ti-Si-N coating wear coefficient decreases to 0.69 (T = 500 °C), which is approximately on 25% less, than under room temperature. Elementary analysis results are presented on fig. 2, it was obtained using RBS method and EDS (energy-dispersion spectroscopy). As it is clearly seen from fig. 2a), Si concentration is less than 5 at.%, N concentration ≈ (35 ÷ 40) at.%, rest one is Ti, and for fig. 2b) N concentration ≈ 50 at.%, Ti ≈ 44 at.%, Si ≈ 5.5 at.%. Coating’s thickness equals to 2.18 ± 0.01 µm in according to RBS data. Fig. 1. Ti-Si-N coating’s X-ray diffraction patterns: 1) as deposited; 2) after annealing under the temperature 600 °C for 30 min, vacuum P = 50 mbar. Table 2 Tribological properties of nanocomposite coatings Coating Tempera- ture, °C Wear fac- tor, coa- ting, mm3/nm Friction coefficient Wear coun- ter body mm3/nm Ti-Si-N 30 7.69⋅10–5 3.28⋅10–5 0.88 300 2.63⋅10–5 3.49⋅10–5 0.82 600 1.95⋅10–5 2.75⋅10–5 0.69 TiN 30 6.75⋅10–5 3.30⋅10–5 0.81 300 3.62⋅10–5 3.51⋅10–5 0.87 600 5.16⋅10–5 3.83⋅10–5 0.91 a) b) M.V. KAVERIN, B. ZHOLLYBEKOV ФІП ФИП PSE, 2013, т. 11, № 3, vol. 11, No. 3 ФІП ФИП PSE, 2013, т. 11, № 3, vol. 11, No. 3266 RBS data confirms by EDX results, see fig. 2c). Concentration of Si in the coating is 2.62 at.%, Ti ≈40.69 at.%, N ≈ 55.92 at.%. For another series of samples (with Si concentration ≥ 5.8 at.%) we provided investigations of Si-Nx connection using XPS analysis. It showed high peak on 101.9 eV, and it points directly on forming of Si-Nx connection in this sample. But also we had a small peak, which points on forming of a very few amount of Si-O on 103.9 eV (after annealing in the air under the tem- perature of 600 °C for 30 min). Additional µ-PIXE investigations showed SiN forming on TiN nano- grains borders. Images of the coating’s surface before and after annealing, under the temperature 600 °C (for 30 min.) are presented on fig. 3. We can observe flat “drops” of melted phase, no matter of HF stimu- lation. We should note that part of plasma jet con- sists of drop fractions, and we did not make analysis of such fractions. To obtain a real thickness of Ti-Si-N nanostruc- ture coating and to norm the depth of slow positron beam analysis, we cut a circle hole, through the coa- ting thickness. As it is seen from fig. 3c), coating’s thickness equals to 2.39 ÷ 2.41 µm. Calculation of positrons penetration depth shows that Emax = 20 keV, it corresponds to 2.11 µm of thickness. Even if we will take into account diffusion of ther- malized positrons (it length is L ≈ 100 nm), we will see that positron beam cannot reach interface between coating and substrate. That is why profiles of mean positron’s penetration depths give us in- formation about vacancy-type defects on the whole thickness of Ti-Si-N coating, but the interface border is not really achieved by them. c) d) Fig. 2. Energy spectrums for samples with Ti-Si-N coa- tings; (a) bias potential –50 V, PN = 0.5 Pa (RBS), second curve corresponds to etalon SiW curve (for comparing); (b) bias potential –100 V, PN = 0.7 Pa (RBS); (c) bias po- tential –50 V, PN = 0.5 Pa (EDX); (d) XPS spectra obtained from Ti-Si-N coating. a) b) c) Fig. 3. Surface topography of the Ti-Si-N coating; (a) as deposited state; (b) after annealing under the temperature of 600 °C; (c) SEM-analysis of circle cross-section, which was obtained using ion beam cutting. STRUCTURE, PROPERTIES AND MORPHOLOGY OF NANOSTRUCTURED COATINGS SOLID Ti-Si-N 267 Positron annihilation method is the most effective, responsive and reliable method of analysis of free volumes in nanocrystalline materials (it has possible interval of defect’s analysis in the range 10–6 ± 10–3 defects per atom) [14, 15]. Part of positrons can be captured on the interface of two neighboring nanograins or on boundary junction of three neigh- boring nanocrystals. It gives us good opportunity to solve one of the most complicated and interesting problems of nanomaterials to understand structure (including electron structure) of the interfaces bet- ween nanograins, because length (volume) of such interfaces influences a lot on properties of nano- composite coatings [1 − 9]. Fig. 4 shows dependence of S-parameter on energy, in other words, we can see profiles of defects in Ti-Si-N coating before (black curve) and after (red curve) thermal annealing under the temperature of 600 °C (30 min). Significant changes in electron and defect struc- ture of the coating is clearly seen from this figure. We should note, that defects concentration increases on the whole thickness of the coating, all positrons locates and annihilates on defects, which are situated on the boundaries of nanograins. Depth of diffusion of thermalized positrons is ≈100 nm, size of nano- grains is (12.5 ÷ 13) nm, so we can say that almost all positrons are captured on interface’s defects. As approaching to the interface between coating and substrate, S-parameter significantly increases, i.e. defects also migrate to the interface between coating and substrate due to thermal diffusion. Thickness of this transition layer of defects is no more than 250 nm. Calculation of vacancy defects concentra- tion was done using positron capture model with two types of vacancy defects [12], and it showed that defects concentration increases after annealing from 5⋅1016 to 7.5⋅1017 cm–3, thermally activated vacancies concentration also increases from 1⋅1016 to 5⋅1018 cm–3 (see red curve). Loading and unloading curves are presented on fig. 5. Nanoindentor penetrates on the surface layer of the Ti-Si-N coating (three different loadings). As it is seen from calculations, based on Oliver-Pharr methodic, an average hardness for such deposition regimes is 38.7 GPa, elasticity modulus is 370 ± 12 GPa. Annealing under the temperature of 600 °C in vacuum leads to increasing of elasticity modulus to values (430 − 448) GPa, it is connected with finishing of process of spinodal segregation on the boundaries of nanograins, i.e. with forming of thin SiN (Si3N4) interlayer (amorphous and quasi amorphous phases). Fig. 4. Dependence of S-parameter on energy of positron microbeam (black curve as deposited coating, red curve annealed coating). Fig. 5. Loading and unloading curves, obtained for Ti-Si-N coating (U = –100 V, Pn = 0.7 Pa), indentation on 50, 100 and 150 nm depth. a) M.V. KAVERIN, B. ZHOLLYBEKOV ФІП ФИП PSE, 2013, т. 11, № 3, vol. 11, No. 3 ФІП ФИП PSE, 2013, т. 11, № 3, vol. 11, No. 3268 Fig. 6 shows a surface topography of Ti-Si-N nanostructured coatings. On the surface region of 25×25 µm can be seen a variation in depths. Moreover, thermal annealing under the tempe- rature of 600 °C in vacuum also changes Ti-Si-N coating’s surface morphology (fig. 7). We observed decreasing of an average rough- ness size, increasing of amount of defects (it is obvious from fig. 6). After analysis we can say, that structure of defects changes on nanograins interfaces due to annealing, average roughness size decreases, nanohardness increases on 20% (in comparison with as deposited state) and it correlates with our previous works [13, 16]. Friction ratio decreases on 25% it is the main difference as opposed to works [17 – 19]. ACKNOWLEDGEMENTS Authors thanks A.D. Pogrebnjak (Sumy, Ukraine) for measuring of profiles defects using slow positron beam, G. Abrasonis (Dresden, Germany) for ele- ments’ composition studies using RBS-analysis, V.M. Beresnev (Kharkov, Ukraine), D.A. Koles- nikov (Belgorod, Russia) and R. Krause-Rehberg (Halle, Germany). The work was done under fi- nancial support of Ministry of Education and Science of Ukraine (state program, order No. 411), and in collaboration with NIMS (Tsukuba, Japan) and Martin-Luther University (Dresden, Germany). The work was supported by Ministry of Education and Science of Ukraine (project No. 011U001382). Authors are grateful to the staff of the Joint Research Center “Diagnostics of Structure and Properties of Nanomaterials” (Belgorod State University, Russia) for their assistance with instrumental analysis. REFERENCES 1. Gleiter Н. Nanocrystalline materials//Progress in Materials Science. − 989.− Vol. 33.− P. 233-315. 2. Siegel R.W. Cluster-Assembled Nanophase Ma- terials//Annual Review of Materials Science. − 1991. − Vol. 21. − P. 559-579. 3. Veprek S., Reiprich S.A. Concept for the design of novel superhard coatings//Thin Solid Films. − 1995. − Vol. 268. − P. 64-71. 4. Pogrebnyak A.D., Shpak A.P., Azarenkov N.A., Beresnev V.M. Structures and properties of hard and superhard nanocomposite coatings//Physics- Uspekhi. −2009. − Vol. 52. − P. 29-54. 5. Mayrhofer P.H., Mitterer C., Hultman L., Cle- mens H. Microstructural design of hard coatings //Progress in Materials Science. − 2006. − Vol. 51. − P. 1032-1114. 6. Musil J. Hard and superhard nanocomposite coa- tings//Surface and Coatings Technology. − 2000. − Vol. 125. − P. 322-330. STRUCTURE, PROPERTIES AND MORPHOLOGY OF NANOSTRUCTURED COATINGS SOLID Ti-Si-N Fig. 6. An image of the surface topography of Ti-Si-N coating: a) – the surface area of 25×25 мm; b) – profilo- gram of Ti-Si-N coating from 100 to 900 nm roughness. a) b) Fig. 7. Ti-Si-N coating’s surface morphology: (a) 3d AFM image; (b) after annealing under the temperature of 600 °C. b) 269 7. Andrievski R.A. Nanomaterials based on high- melting carbides, nitrides and borides//Russian Chemestri Reviews. − 2005. − Vol. 74. − P. 1061- 1072. 8. Musil J. Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness// Surface and Coatings Technology. − 2012. − Vol. 207. − P. 50-65. 9. Pogrebnjak A.D., Ponomarev A.G., Shpak A.P., Kunitskii Yu.A. Application of micro- and nano- probes to the analysis of small-sized 3D materials, nanosystems, and nanoobjects//Physics-Uspekhi. − 2012. − Vol. 55. − P. 270-300. 10. Pogrebnjak A., Danilionok M., Uglov V., Erdy- baeva N., Kirik G., Dub S., Rusakov V., Shypy- lenko A., Zukovski P., Tuleushev Y. Nanocom- posite Protective Coatings Based on Ti-N-Cr/Ni- Cr-B-Si-Fe, Their Structure and properties//Va- cuum. − 2009. − Vol. 83. − P. 235-239. 11. Pogrebnjak A.D., Uglov V.V., Il’yashenko M.V., Beresnev V.M., Shpak A.P., Kaverin M.V., Er- dybaeva N.K., Kunitskii Yu.A., Tyurin Yu.N., Ko- lisnichenko O.V., Makhmudov N.A., and Shy- pylenko A.P. Nano-Microcomposite and Com- bined Coatings on Ti-Si-NAA/C-Co-Cr/Steel and Ti-Si-N/(Cr3C2)75-(NiCr)25Base: Their Structure and Properties. Nanostructured Materials and Nanotechnology IV//Ceramic Engineering and Science Proceedings. − 2010. − Vol. 31. − P. 127-138. 12. Lavrent’ev V.I., Pogrebnyak A.D., Shandrik R. ‘Evolyuciya vakansionnyh defektov v poverh- nostnyh sloyah metalla pri impul’snom vozdejstvii ‘elektronnym puchkom //Pis’ma v Zh‘ETF. − 1997. − № 65. − P. 618-622. 13. Rempel’S.V., Gusev A.I. Poverhnostnaya segre- gaciya v raspadayuschihsya karbidnyh tverdyh rastvorah//Pis’ma v Zh‘ETF. − 2008. − № 88. − P. 508-513. 14. Krause-Rehberg R., Leipner H.S. Positron Anni- hilation in Semiconductors: Defect Studies. − New York: Springer-Verlag Berlin Heidelberg, 2003. − 387 p. 15. Pogrebnjak A.D., Il’yashenko M.V., Kave- rin M.V., Shypylenko A.P., Pshyk A.V., Beres- nev V.M., Kirik G.V., Erdybayeva N.K., Makh- mudov N.A., Kolisnichenko O.V., Tyurin Yu.N., Shpak A.P. Physical And Mechanical Properties of The Nanocomposite And Combined Ti-N-Si / WC-Co-Cr/ and Ti-N-Si/(Cr3C2)75-(NiCr)25 Coa- tings//Journal of Nano- and Electronic Physics. − 2009. − Vol. 1. − P. 66-77. 16. Pogrebnjak A.D., Mahmud A.M., Karasha I.T., Kirik G.V., Tkachenko R.Y., Shypylenko A.P. Structure аnd Physical-Mechanical Properties of nc-TiN Coatings Obtained by Vacuum-Arc De- position and Deposition of HF Discharg//Journal of Nano- and Electronic Physics.− 2011.−Vol. 3. − P. 97-105. 17. Pogrebnjak A.D., Ruzimov Sh.M., Alontse- va D.L., Zukowski P., Karwat C., Kozak С., Ko- lasik M. Structure and properties of coatings on Ni base deposited using a plasma jet before and after electron a beam irradiation//Vacuum. − 2007. − Vol. 81. − P. 1243. 18. Sobol’ O.V., Pogrebnjak A.D., Beresnev V.M. Effect of the Preparation Conditions on Phase Composition, Structure, and Mechanical Charac- teristics of Vacuum-Arc Zr-Ti-Si-N Coatings// Phys. Met. Metallogr.− 2011.− Vol. 112. − P. 188. 19.Pogrebnjak A.D., Shpak A.P., Beresnev V.M., Kolesnikov D.A., Kunitskii Yu.A., Sobol O.V., Uglov V.V., Komarov F.F., Shypylenko A.P., Makhmudov N.A., Demyanenko A.A., Bai- dak V.S., and Grudnitskii V.V.. Effect of Thermal Annealing in Vacuum and in Air on Nanograin Sizes in Hard and Superhard Coatings Zr–Ti-Si- N//Journal of Nanoscience and Nanotechnology. − 2012. − Vol. 12. M.V. KAVERIN, B. ZHOLLYBEKOV ФІП ФИП PSE, 2013, т. 11, № 3, vol. 11, No. 3