Silicide coatings structure optimization based on multiscale approach
This paper is an attempt to apply the multi-scale approach to the study of silicide coatings on molybdenum. Macro- and microstructure of silicide coatings largely determines mechanical and corrosion properties of molybdenum-protective coating composites. To prevent unacceptable changes, it is nec...
Saved in:
| Published in: | Физическая инженерия поверхности |
|---|---|
| Date: | 2013 |
| Main Authors: | , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Науковий фізико-технологічний центр МОН та НАН України
2013
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/100316 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Silicide coatings structure optimization based on multiscale approach / S.V. Lytovchenko, V.M. Beresnev, V.A. Chyshkala, A.Ye. Dmytrenko, U.S. Nyemchenko, V.V. Burkovska // Физическая инженерия поверхности. — 2013. — Т. 11, № 3. — С. 293–298. — Бібліогр.: 23 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-100316 |
|---|---|
| record_format |
dspace |
| spelling |
Lytovchenko, S.V. Beresnev, V.M. Chyshkala, V.A. Dmytrenko, A.Ye. Nyemchenko, U.S. Burkovska, V.V. 2016-05-19T16:50:14Z 2016-05-19T16:50:14Z 2013 Silicide coatings structure optimization based on multiscale approach / S.V. Lytovchenko, V.M. Beresnev, V.A. Chyshkala, A.Ye. Dmytrenko, U.S. Nyemchenko, V.V. Burkovska // Физическая инженерия поверхности. — 2013. — Т. 11, № 3. — С. 293–298. — Бібліогр.: 23 назв. — англ. 1999-8074 https://nasplib.isofts.kiev.ua/handle/123456789/100316 669.017:620.186. This paper is an attempt to apply the multi-scale approach to the study of silicide coatings on molybdenum. Macro- and microstructure of silicide coatings largely determines mechanical and corrosion properties of molybdenum-protective coating composites. To prevent unacceptable changes, it is necessary to foresee the evolution of structure during formation of the coating and during operation of the composite. This paper analyzes the factors that determine degradation of properties of the coatings at different hierarchical levels. The requirements for the macro- and microstructure of the silicides with a view to achieving better thermal properties of the protective coating have been formulated. В работе предпринята попытка применения мультимасштабного подхода к изучению силицидных покрытий на молибдене. Макро- и микроструктура силицидного покрытия во многом определяет механические и коррозионные свойства композитов молибден – защитное покрытие. Для предотвращения недопустимых изменений необходимо предвидеть эволюцию структуры при формировании покрытия и в процессе эксплуатации композита. В работе проанализированы факторы, определяющие деградацию защитных свойств покрытия на разных иерархических уровнях. Сформулированы требования к макро- и микроструктуре силицидов с целью достижения более совершенных термических свойств защитного покрытия У роботі зроблена спроба застосування мультимасштабного підходу до вивчення силіцидних покриттів на молібдені. Макро- і мікроструктура силіцидних покриттів багато у чому визначає механічні та корозійні властивості композитів молібден – захисне покриття. Для запобігання неприпустимих змін необхідно передбачити еволюцію структури при формуванні покриття і в процесі експлуатації композиту. У роботі проаналізовано чинники, що визначають деградацію захисних властивостей покриття на різних ієрархічних рівнях. Сформульовані вимоги до макро- і мікроструктури силіцидів з метою досягнення досконаліших термічних властивостей захисного покриття. en Науковий фізико-технологічний центр МОН та НАН України Физическая инженерия поверхности Silicide coatings structure optimization based on multiscale approach Оптимизация структуры силицидных покрытий на основе мультимасштабного подхода Оптимізація структури силіцидних покриттів на основі мультимасштабного підходу Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Silicide coatings structure optimization based on multiscale approach |
| spellingShingle |
Silicide coatings structure optimization based on multiscale approach Lytovchenko, S.V. Beresnev, V.M. Chyshkala, V.A. Dmytrenko, A.Ye. Nyemchenko, U.S. Burkovska, V.V. |
| title_short |
Silicide coatings structure optimization based on multiscale approach |
| title_full |
Silicide coatings structure optimization based on multiscale approach |
| title_fullStr |
Silicide coatings structure optimization based on multiscale approach |
| title_full_unstemmed |
Silicide coatings structure optimization based on multiscale approach |
| title_sort |
silicide coatings structure optimization based on multiscale approach |
| author |
Lytovchenko, S.V. Beresnev, V.M. Chyshkala, V.A. Dmytrenko, A.Ye. Nyemchenko, U.S. Burkovska, V.V. |
| author_facet |
Lytovchenko, S.V. Beresnev, V.M. Chyshkala, V.A. Dmytrenko, A.Ye. Nyemchenko, U.S. Burkovska, V.V. |
| publishDate |
2013 |
| language |
English |
| container_title |
Физическая инженерия поверхности |
| publisher |
Науковий фізико-технологічний центр МОН та НАН України |
| format |
Article |
| title_alt |
Оптимизация структуры силицидных покрытий на основе мультимасштабного подхода Оптимізація структури силіцидних покриттів на основі мультимасштабного підходу |
| description |
This paper is an attempt to apply the multi-scale approach to the study of silicide coatings on
molybdenum. Macro- and microstructure of silicide coatings largely determines mechanical and corrosion
properties of molybdenum-protective coating composites. To prevent unacceptable changes, it
is necessary to foresee the evolution of structure during formation of the coating and during operation
of the composite. This paper analyzes the factors that determine degradation of properties of the
coatings at different hierarchical levels. The requirements for the macro- and microstructure of the
silicides with a view to achieving better thermal properties of the protective coating have been formulated.
В работе предпринята попытка применения мультимасштабного подхода к изучению силицидных покрытий на молибдене. Макро- и микроструктура силицидного покрытия во многом
определяет механические и коррозионные свойства композитов молибден – защитное покрытие.
Для предотвращения недопустимых изменений необходимо предвидеть эволюцию структуры
при формировании покрытия и в процессе эксплуатации композита. В работе проанализированы
факторы, определяющие деградацию защитных свойств покрытия на разных иерархических
уровнях. Сформулированы требования к макро- и микроструктуре силицидов с целью достижения более совершенных термических свойств защитного покрытия
У роботі зроблена спроба застосування мультимасштабного підходу до вивчення силіцидних
покриттів на молібдені. Макро- і мікроструктура силіцидних покриттів багато у чому визначає
механічні та корозійні властивості композитів молібден – захисне покриття. Для запобігання
неприпустимих змін необхідно передбачити еволюцію структури при формуванні покриття і в
процесі експлуатації композиту. У роботі проаналізовано чинники, що визначають деградацію
захисних властивостей покриття на різних ієрархічних рівнях. Сформульовані вимоги до макро-
і мікроструктури силіцидів з метою досягнення досконаліших термічних властивостей захисного
покриття.
|
| issn |
1999-8074 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/100316 |
| citation_txt |
Silicide coatings structure optimization based on multiscale approach / S.V. Lytovchenko, V.M. Beresnev, V.A. Chyshkala, A.Ye. Dmytrenko, U.S. Nyemchenko, V.V. Burkovska // Физическая инженерия поверхности. — 2013. — Т. 11, № 3. — С. 293–298. — Бібліогр.: 23 назв. — англ. |
| work_keys_str_mv |
AT lytovchenkosv silicidecoatingsstructureoptimizationbasedonmultiscaleapproach AT beresnevvm silicidecoatingsstructureoptimizationbasedonmultiscaleapproach AT chyshkalava silicidecoatingsstructureoptimizationbasedonmultiscaleapproach AT dmytrenkoaye silicidecoatingsstructureoptimizationbasedonmultiscaleapproach AT nyemchenkous silicidecoatingsstructureoptimizationbasedonmultiscaleapproach AT burkovskavv silicidecoatingsstructureoptimizationbasedonmultiscaleapproach AT lytovchenkosv optimizaciâstrukturysilicidnyhpokrytiinaosnovemulʹtimasštabnogopodhoda AT beresnevvm optimizaciâstrukturysilicidnyhpokrytiinaosnovemulʹtimasštabnogopodhoda AT chyshkalava optimizaciâstrukturysilicidnyhpokrytiinaosnovemulʹtimasštabnogopodhoda AT dmytrenkoaye optimizaciâstrukturysilicidnyhpokrytiinaosnovemulʹtimasštabnogopodhoda AT nyemchenkous optimizaciâstrukturysilicidnyhpokrytiinaosnovemulʹtimasštabnogopodhoda AT burkovskavv optimizaciâstrukturysilicidnyhpokrytiinaosnovemulʹtimasštabnogopodhoda AT lytovchenkosv optimízacíâstrukturisilícidnihpokrittívnaosnovímulʹtimasštabnogopídhodu AT beresnevvm optimízacíâstrukturisilícidnihpokrittívnaosnovímulʹtimasštabnogopídhodu AT chyshkalava optimízacíâstrukturisilícidnihpokrittívnaosnovímulʹtimasštabnogopídhodu AT dmytrenkoaye optimízacíâstrukturisilícidnihpokrittívnaosnovímulʹtimasštabnogopídhodu AT nyemchenkous optimízacíâstrukturisilícidnihpokrittívnaosnovímulʹtimasštabnogopídhodu AT burkovskavv optimízacíâstrukturisilícidnihpokrittívnaosnovímulʹtimasštabnogopídhodu |
| first_indexed |
2025-11-26T17:35:16Z |
| last_indexed |
2025-11-26T17:35:16Z |
| _version_ |
1850765785508610048 |
| fulltext |
293
INTRODUCTION
Investigations of fundamental principles and basic
mechanisms of structural phase transitions in solids
are the most important component in development
of new materials for use in modern high technology.
Currently, a variety of composite materials, including
those containing silicides of refractory metals, are
increasingly replacing traditional structural and func-
tional materials for the creation of new technologies,
machines, mechanisms and devices in various fields
of science and technology [1, 2]. This is largely due
to the implementation of previously unattainable
complex and/or the level of physical and mechanical,
electro-physical, thermal, and other properties in
such materials, which allows us to solve relevant
technical and consumer problems: from reducing
UDC 669.017:620.186.
SILICIDE COATINGS STRUCTURE OPTIMIZATION BASED
ON MULTISCALE APPROACH
S.V. Lytovchenko, V.M. Beresnev, V.A. Chyshkala, A.Ye. Dmytrenko,
U.S. Nyemchenko, V.V. Burkovska
V.N. Karazin Kharkiv National University
Received 21.09.2013
This paper is an attempt to apply the multi-scale approach to the study of silicide coatings on
molybdenum. Macro- and microstructure of silicide coatings largely determines mechanical and cor-
rosion properties of molybdenum-protective coating composites. To prevent unacceptable changes, it
is necessary to foresee the evolution of structure during formation of the coating and during operation
of the composite. This paper analyzes the factors that determine degradation of properties of the
coatings at different hierarchical levels. The requirements for the macro- and microstructure of the
silicides with a view to achieving better thermal properties of the protective coating have been for-
mulated.
Keywords: molybdenum, coatings, silicides, micro- and macrostructure
ОПТИМИЗАЦИЯ СТРУКТУРЫ СИЛИЦИДНЫХ ПОКРЫТИЙ НА ОСНОВЕ
МУЛЬТИМАСШТАБНОГО ПОДХОДА
С.В. Литовченко, В.М. Береснев, В.А. Чишкала, А.Е. Дмитренко,
У.С. Немченко, В.В. Бурковская
В работе предпринята попытка применения мультимасштабного подхода к изучению си-
лицидных покрытий на молибдене. Макро- и микроструктура силицидного покрытия во многом
определяет механические и коррозионные свойства композитов молибден – защитное покрытие.
Для предотвращения недопустимых изменений необходимо предвидеть эволюцию структуры
при формировании покрытия и в процессе эксплуатации композита. В работе проанализированы
факторы, определяющие деградацию защитных свойств покрытия на разных иерархических
уровнях. Сформулированы требования к макро- и микроструктуре силицидов с целью дости-
жения более совершенных термических свойств защитного покрытия.
Ключевые слова: молибден, покрытия, силициды, микроструктура, макроструктура.
ОПТИМІЗАЦІЯ СТРУКТУРИ СИЛІЦИДНИХ ПОКРИТТІВ НА ОСНОВІ
МУЛЬТИМАСШТАБНОГО ПІДХОДУ
С.В. Литовченко, В.М. Береснєв, В.О. Чишкала, О.Є. Дмитренко,
У.С. Нємченко, В.В. Бурковська
У роботі зроблена спроба застосування мультимасштабного підходу до вивчення силіцидних
покриттів на молібдені. Макро- і мікроструктура силіцидних покриттів багато у чому визначає
механічні та корозійні властивості композитів молібден – захисне покриття. Для запобігання
неприпустимих змін необхідно передбачити еволюцію структури при формуванні покриття і в
процесі експлуатації композиту. У роботі проаналізовано чинники, що визначають деградацію
захисних властивостей покриття на різних ієрархічних рівнях. Сформульовані вимоги до макро-
і мікроструктури силіцидів з метою досягнення досконаліших термічних властивостей захисного
покриття.
Ключові слова: молібден, покриття, силіциди, мікроструктура, макроструктура.
Lytovchenko S.V., Beresnev V.M., Chyshkala V.A., Dmytrenko A.Ye., Nyemchenko U.S., Burkovska V.V., 2013
ФІП ФИП PSE, 2013, т. 11, № 3, vol. 11, No. 3294
weight and intake of metals to enhancing their dura-
bility, performance and efficiency.
Development of new and improvement of known
materials is based on the results of two related areas
of work – experimental and theoretical. In theo-
retical studies, the so-called cybernetic (experi-
mental-statistical) and multilevel or multiscale
approaches are distinguished. In the latter case, the
material is represented in the form of a complex
system – design, where the individual elements of
the structure play a role of subordinate components
(sub-systems, sub-structures), and conduct a direct
simulation of the behavior of the material under the
combined influence of external damaging factors
including the internal geometry, properties, and
interaction of elements. In this simulation, various
approaches of continuum mechanics involving
numerical or discrete techniques are used [3, 4].
In experimental studies of the mechanisms of
formation and evolution of the structure of materials
as well as structural phase transitions in them, it is of
high importance to take into account the full range
of external influences arising during operation (heat
treatment, irradiation, corrosion, etc.). Combined
external impact initiates the interference processes
in materials, which can lead to the formation of quasi-
stable states and can influence the formation of
defects or other local irregularities in the original
structure of the material [5, 6].
In this paper, a multiscale hierarchical approach
is applied to the experimental studies of the possibility
of raising long-term operational stability of the
molybdenum-silicide coating composite material.
GENERAL CHARACTERISTICS OF
SILICIDE COATINGS AND MULTI-SCALE
ELEMENTS IN THEM
Silicide coatings are the most effective means of
protection of refractory metals, particularly molybd-
enum from high-temperature oxidation [7, 8].
Silicides are used due to their heat resistance, ability
to retain sufficient mechanical properties within a
wide temperature range, higher conductivity and
compatibility of silicide obtaining operation with a
total production technology of the final products.
Furthermore, silicides have a number of advantages,
e.g. a high melting point, a wide range of resistivity,
ability to form epitaxial layers forming the Schottky
barrier of the predetermined value, possibility to
grow the oxide film on the silicide. [9] At tempe-
ratures above 1500 °С in oxygenated atmospheres
on the surface of the silicides the oxide film consisting
of practically pure silicon dioxide SiO2 is formed.
This film provides a high heat resistance of silici-
de coatings, preventing penetration of oxygen to the
metal surface.
Increased use of silicide coatings is constrained
by a number of negative factors, significant of which
is the lack of stability at high temperatures. This
instability is caused by the initial thermodynamic
instability of the substrate-coating system and its
tendency for chemical reactions [10].
To achieve the best performance characteristics
of molybdenum products with coatings, it is impor-
tant to fully define the connection between the com-
position, structure and properties of the coatings,
to simulate the optimal coating and develop a tech-
nology of its formation. At the same time, the si-
mulation should take a large scale of object into ac-
count – from the macro-scale of the whole coating
and its individual layers (with the size of hundreds of
micrometers, fig. 1) to sub-micron elements (crys-
Fig. 1. Macroscale elements of the molybdenum substrate
– two-phase silicide coating composition: 1 – MoSi2;
2 – Mo5Si3, 3 – Мо.
SILICIDE COATINGS STRUCTURE OPTIMIZATION BASED ON MULTISCALE APPROACH
a)
295
tallites of eutectic mixtures, fig. 2) and the smallest
nanoscale objects (pores, microcracks nucleus,
interstitial atoms and molecules, vacancy clusters,
fig. 3).
b)
Fig. 2. Submicron elements of the MoSi2-Mo5Si3 eutectic
mixture.
Fig. 3. Elements of the smallest scale in the silicide coating:
а) – cluster of pores, b) – impurity.
S.V. LYTOVCHENKO, V.M. BERESNEV, V.A. CHYSHKALA, A.YE. DMYTRENKO, U.S. NYEMCHENKO, V.V. BURKOVSKA
ФІП ФИП PSE, 2013, т. 11, № 3, vol. 11, No. 3
a)
b)
It is known that the best coating from the
perspective of uniform stress distribution, bonding
strength and the greatest thermodynamic stability is
a diffusion layer which is a continuous series of solid
solutions [11]. Such a layer, for example, is formed
in a place of contact of molybdenum and tungsten
under high annealing (about 2000 °C) in vacuum.
The same is observed while chromium-plating of
molybdenum, tungsten and other metals. However,
there is a relatively small amount of systems where
due to the counter diffusion the monophase layer
with continuously varying concentration of the do-
ping component is implemented. This concentration
continuously varies from the boundary value (at one
boundary) to zero (at the other boundary).
OPTIMIZATION OF MACRO-AND
MICROSTRUCTURE OF SILICIDE
COATINGS
In many cases, including molybdenum siliconizing,
multiphase compositions consisting of the layers of
chemical compounds and sequentially arranged
bounded solid solutions are formed.
When modeling a coating at macro level in sys-
tems with intermediate compounds (namely Mo-Si
relates to such systems, where there are stable com-
pounds of MoSi2, Mo5Si3, Mo3Si [12, 13]) it is
necessary to strive for creating a composition the
structure of which is very close to continuos series
of solutions. This can be is achieved through me-
eting several requirements simultaneously.
Firstly, the greatest concentration of silicon must
be on the surface of the coating. Implementation of
this condition ensures rapid formation of an oxide
film of SiO2 and achievement of the desired pro-
tective effect.
Secondly, the concentration of silicon from the
side of the molybdenum substrate should be the
lowest, this will slow down the diffusive dissolution
of the silicides inside it.
Thirdly, to achieve and maintain a reliable ad-
hesive interaction between the coating and the sub-
strate, it is necessary to relieve the mechanical stress
in the system during formation of the coating as well
as during the operation of the substrate-coating
composite as much as possible.
Meeting the above requirements for the molyb-
denum-silicon system means that the silicide coating
must be multiphase, and it is preferable to carry out
its formation sequentially, starting from the lowest
ФІП ФИП PSE, 2013, т. 11, № 3, vol. 11, No. 3296
silicide phases (phases with the less silicon atoms in
the molecules of silicides).
The implementation of the proposed scheme to
form a coating provides minimal changes in specific
volumes on the phase boundaries and the lowest
difference between the thermal expansion coef-
ficients of the individual layers with a common
boundary.
It should be noted that during the establishment
of diffusion coatings the phase composition is often
determined by the rate of their formation. In most
cases, due to economic considerations, they tradi-
tionally tend to maximize the saturation velocity [14].
During siliconizing at high saturation speeds, the
coating consists mostly from the higher silicide phase,
i.e. the phase richest in silicon. In the studied system
it is molybdenum disilicide MoSi2. Since the specific
volume ratio of this phase and the base metal
(molybdenum) are significantly different, in the
process of saturation, the coating is exposed to
significant stresses relaxation of which leads to the
formation of micro-and macro-cracks, pores and
other defects. During operation of the coating, the
amount of defects increases, they combine into larger
formations, which leads to a rapid loss of protective
effect of the coating. It is therefore extremely
important to organize the technological process of
coating deposition in a way to provide a gradual
decrease of stress by the thickness of the coating.
The stated comments also lead us to conclusion
about the reasonability of forming a coating through
the lower silicide phases [15].
Currently, lower molybdenum silicides are used
mainly as individual additives in composite materials
[16, 17], which is a consequence of rather
widespread belief of their insufficient heat resistance.
The standard approach to the formation of silicide
coatings is the formation of sufficiently thick (500
microns or more) layers, the significant (most
frequently – the major) part of which is represented
by disilicide (fig. 4).
During the further use of the product with such
coating, only its minor part is used as intended (i. e.,
to form an oxide layer of SiO2 on the surface), and
the rest turns into lower silicides as a result of diffusion
reaction, which is activated by the high performance
temperatures [18]. The process of redistribution of
silicide phases in the coating is accompanied with
the mechanical stress of alternating sign (tensile stress
and compressive stress), which is due to the natural
thermodynamic and structural properties of individual
silicide phases [19]. These stresses can lead to a
failure of uniformity of the coating.
The specific list of macroscale factors may be
adjusted depending on the actual operating
conditions (e.g., the case of coatings with different
configuration and structure on different parts of the
same product can be implemented in the presence
of a temperature gradient on the surface of a product
or different curvature of the surface on different
areas).
Optimal modeling of the structure of the silicide
coating on the microscale primarily requires creation
of such a crystallite composition which can reduce
a)
b)
Fig. 4. Disilicide layers in the coatings on molybdenum:
а) – almost entirely disilicide coating with the thickness
of 450 microns, MIM-8 microscope; b) – complex coating
on molybdenum (1) with an inner layer of silicide Mo5Si3
(2) and an outer layer of about 200 microns of molybdenum
disilicide (3), Quanta 200 SEM.
SILICIDE COATINGS STRUCTURE OPTIMIZATION BASED ON MULTISCALE APPROACH
297
the grain boundary flow of silicon, slow down the
diffusion phase dissolution and increase efficiency
of the coating without significant phase
transformations in it. In this sense, a coating with a
fine-grained structure of the silicide formed by
equiaxed (spherical or polyhedral) grains has the best
potential. In our view, the better stability would be
provided by a microstructure with grains elongated
along the phase boundaries, and not oriented
perpendicular to them (fig. 5).
Much attention is paid to the fight against diffuse
dissolving of disilicide phase and increase of the
protective effect of the coating [20]. Attempts of
insertion of additional elements to the composition
of the coating, which form the barrier layers from
the foreign substances to slow the diffusive disso-
lution of the higher phase, gave some positive result
at moderate temperatures (up to 1650 – 1700 °C).
At higher temperatures, the material of the barrier
layer rapidly pollutes the protective film of silicon
dioxide, and the heat resistance of the coating is
sharply reduced [21].
Point insertion of additional chemical elements in
the form of individual embedded or substituted atoms
with formation of sub-micron inclusions of third
phases of nanoscale inclusions of individual atoms
will eliminate the negative factors that are inherent in
conventional barrier layers, but the experimental data
of such modification of the coating are practically
absent. There is another model approach, viz. crea-
tion of chemically-related barrier layers in the coat
submicron scale ing, which are obtained without the
insertion of additional chemical elements. Examples
of such layers are eutectic mixtures of nano- and
submicron particles of various molybdenum silicides,
as well as their solid solutions [22]. One of the op-
tions to obtain such compositions (fig. 6) can be
contact melting of different silicide layers [23], co-
sputtering of elements, f ollowed by condensation
and reactionary diffusion or there can be some other
methods.
CONCLUSION
Multi-level hierarchical approach (multiscale
approach) is an important tool for optimizing the
structure of composite materials. To achieve the best
performance of materials in different operational
conditions it is necessary to know the full range of
both structural characteristics of the composite
material, and environmental factors, which initiate
evolution of the structure at each hierarchical level.
Such knowledge allows to choose the acceptable
level of degradation for each structural level and
thereby simulate a coating with optimal structure-
phase state.
The factors determining the implementation and
changes in the structure of molybdenum silicides,
are the initial structure of the substrate, material
defect, stress-strain state of the material, method of
processing, temperature, composition and the source
of diffusion impurities. The requirements to the
chemical composition of individual areas of the
coating, to the sequence of phase layers and to the
microstructure of the layers have been formulated.
Fig. 5. Large-block silicide coating (2) on molybdenum
(1), Quanta 200.
Fig. 6. The result of contact melting of silicides: MoSi2 -
Mo5Si3 eutectic layer in silicide coatings on molybdenum,
Quanta 200.
ФІП ФИП PSE, 2013, т. 11, № 3, vol. 11, No. 3
S.V. LYTOVCHENKO, V.M. BERESNEV, V.A. CHYSHKALA, A.YE. DMYTRENKO, U.S. NYEMCHENKO, V.V. BURKOVSKA
ФІП ФИП PSE, 2013, т. 11, № 3, vol. 11, No. 3298
The options of the construction of the coating with
improved stability have been proposed.
For a system of molybdenum-silicide coating,
practically in all cases, the best combination is a multi-
layer multi-phase silicide coating with a gradual
decrease in the concentration of silicon from the
surface to the substrate.
REFERENCES
1. Autar K. Kaw. Mechanics of Composite Mate-
rials, 2nd Ed. – Mechanical and Aerospace En-
gineering Series. – CRC Press: 2005. – 496 p.
2. Proceedings of the First High Temperature Struc-
tural Silicides Workshop. Gaithersburg, MD, USA
/Ed. by H. Herman//Materials Science and Engi
neering: A. – 1991. – Vol. 155, Iss. 1-2. – P. 278.
3. Moshev V.V., Svistkov A.L., Garishyn O.K, Yev-
lampiyeva C.E., Rogovoy A.A., Kovrov V.N.,
Komar L.A., Golotina L.A., Kozhevnikova L.L.
Structural mechanisms of formation of the me-
chanical properties of granular polymer com-
posites. – Yekaterinburg: Ural Academy of
Sciences, Institute of Continuum Mechanics,
1997. –507 p.
4. Vakulenko A.A. About the effective properties
and strength of ceramic composites//Proceedings
of the Russian Academy of Sciences. Ser. Me-
chanics of solids. – 1998. – № 6. – P. 50-72.
5. Kirichok A.V., Kuklin V.M. Allocated Imper-
fections of Developed Convective Structures//
Physics and Chemistry of the Earth Part A. –
1999. – № 6. – Р. 533-538.
6. Kuklin V.M. The role of absorption and dissipa-
tion of energy in the formation of the spatial non-
linear structures in nonequilibrium media//Ukrai-
nian Journal of Physics. Reviews. – 2004. –
Vol. 1, № 1. – P. 49-81.
7. High-Temperature Silicides and Refractory Al-
loys /Ed. C.L. Briant, J.J. Petrovic, B.P. Bewlay,
A.K. Vasudevan, H.A. Lipsitt//MRS Procee-
dings. – 1994. – Vol. 322. – P. 588.
8. Dzyadykevich Yu.V. Heat-resistant coatings for
molybdenum and its alloys//Powder metallurgy.
– 1988. – № 2. – P. 41-48.
9. Vasudevan A.K., Petrovic J.J. A Comparative
Overview of Molybdenum Disilicide Composites
//Pros. of the 1st HTSS. – 1992. – P. 1-17.
10. Lytovchenko S.V., Maslova T.S., Matviyen-
ko D.S. and et. al. High-temperature stability of
the silicide coatings based on molybdenum and
other refractory metals//Bulletin of Kharkiv
National University, № 529, physical series
“Nuclei, particles, fields”. – 2001. – Issue. 3(15).
– P. 64-66.
11. Nechyporenko Ye.P., Petrychenko A.P., Pavlen-
ko Yu.B. Protection of metals from corrosion. –
Kharkiv: Higher school, 1985. – 112 p.
12. Samsonov G.V., Dvorina L.A., Rud B.M. Silici-
des. – M.: Metallurgy, 1979. – 271 p.
13. Gokhale A.B., Abbaschian G.J. The Mo-Si (Mo-
lybdenum-Silicon) System//J. Phase Equilibria. –
1991. – Vol. 12, № 4. – P. 493-498.
14. Zmiy V.I., Rudenky S.G. Reaction-activated dif-
fusion and vacuum coatings. – Kharkiv: Khar-
kiv Institute of Physics and Technology, 2010. –
158 p.
15. Nechyporenko Ye.P., Petrychenko A.P., Pavlen-
ko Yu.B., Lytovchenko S.V., Chyshkala V.A.
Heat-resistant coatings based on molybdenum of
the lower silicide phases//Heat-resistant inorganic
coatings: Saint-Petersburg: Science. – 1990. –
P. 183-186.
16. Patent. 2154122 Russian Federation, МPК C22
C29/02, C22C29/18, H05B3/14 The composite
heat-resistant material [Text]/B.A. Gnesin.;
B.M. Epelbaum.; P.A. Gurzhiyants.; applicant
and patentee Institute of Solid State Physics. –
№ 98113544/02; application 07.07.1998; publis-
hed 10.08.2000.
17. Yan J., Xu H., Zhang H., Tang S. MoSi2 oxidation
resistance coatings for Mo5Si3/MoSi2 compo-
sites//Rare metals. - 2009. – Vol. 28, № 4. –
Р. 418.
18. Azarenkov N.A., Sobol O.V., Pogrebnyak A.D.
and et. al. Materials science of the nonequilibrium
state of the modified surface: Monograph. –
Sumy: Sumy State university, 2012. – 604 p.
19. Samsonov G.V., Dvorina L.A., Rud B.M. Silici-
des. – M.: Metallurgy, 1979. – 271 p.
20. Byalobezhsky A.B., Krasilov B.I., Tsyrlin M.S.
The modified silicide diffusion coatings for pro-
tection against oxidation of molybdenum//Pro-
tective coatings on metals. – 1973. – P. 90-93.
21. Burykina A.L., Dzyadykevich Yu.V., Epik A.L.
and et. al. The use of boride coatings as barriers
to diffusion of refractory metals//Organosilicate
and inorganic coatings. – 1975. – Vol. 195. –
P. 203.
22. Gnesin B.A., Gurzhiyants P.A., Borysenko Ye.B.
Use of composite materials and some properties
of eutectics of inorganic Materials (Mo,W)5Si3-
(Mo,W)Si2. – 2003. – Vol. 39, №7. – P. 827-836.
23. Nechyporenko Ye.P., Pavlenko Yu.B., Chyshka-
la V.A., Lytovchenko S.V. Formation of eutectic
silicide coatings on molybdenum//Powder me-
tallurgy. – 1993. – № 9-10. – P. 43-46.
SILICIDE COATINGS STRUCTURE OPTIMIZATION BASED ON MULTISCALE APPROACH
|