Application of the amplitude-frequency formulation to a nonlinear vibration system typified by a mass attached to a stretched wire

The He’s Amplitude-Frequency Formulation is applied to study the periodic solutions of a strongly nonlinear system. This system corresponds to the motion of a mass attached to a stretched wire. The usefulness and effectiveness of the proposed technique is illustrated. The results are compared with e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Прикладная механика
Datum:2014
Hauptverfasser: Akbarzade, M., Farshidianfar, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут механіки ім. С.П. Тимошенка НАН України 2014
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/100638
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Application of the amplitude-frequency formulation to a nonlinear vibration system typified by a mass attached to a stretched wire / M. Akbarzade, A. Farshidianfar // Прикладная механика. — 2014. — Т. 50, № 4. — С. 137-144. — Бібліогр.: 19 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-100638
record_format dspace
spelling Akbarzade, M.
Farshidianfar, A.
2016-05-24T16:52:51Z
2016-05-24T16:52:51Z
2014
Application of the amplitude-frequency formulation to a nonlinear vibration system typified by a mass attached to a stretched wire / M. Akbarzade, A. Farshidianfar // Прикладная механика. — 2014. — Т. 50, № 4. — С. 137-144. — Бібліогр.: 19 назв. — англ.
0032-8243
https://nasplib.isofts.kiev.ua/handle/123456789/100638
The He’s Amplitude-Frequency Formulation is applied to study the periodic solutions of a strongly nonlinear system. This system corresponds to the motion of a mass attached to a stretched wire. The usefulness and effectiveness of the proposed technique is illustrated. The results are compared with exact solutions and those obtained by the harmonic balance show a good accuracy. Approximate frequencies are valid for the complete range of vibration amplitudes. Excellent ag
Амплітудно-частотний підхід Хе застосовано до вивчення періодичних розв’язків сильно нелінійних систем. Проілюстровано корисність і ефективність запропонованої методики. Результати порівняно з точними розв‘язками і розв‘язками, отриманими на основі енергетичного балансу. Порівняння показало добру точність. Наближено обчислені частоти виявилися вірними у всьому діапазоні амплітуд коливань. Продемонстровано і обговорено узгодженість між наближеними та точними значеннями частот.
en
Інститут механіки ім. С.П. Тимошенка НАН України
Прикладная механика
Application of the amplitude-frequency formulation to a nonlinear vibration system typified by a mass attached to a stretched wire
Применение амплитудно-частотного под- хода к нелинейным колебаниям системы в виде массы, присоединенной к растягиваемой проволоке
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Application of the amplitude-frequency formulation to a nonlinear vibration system typified by a mass attached to a stretched wire
spellingShingle Application of the amplitude-frequency formulation to a nonlinear vibration system typified by a mass attached to a stretched wire
Akbarzade, M.
Farshidianfar, A.
title_short Application of the amplitude-frequency formulation to a nonlinear vibration system typified by a mass attached to a stretched wire
title_full Application of the amplitude-frequency formulation to a nonlinear vibration system typified by a mass attached to a stretched wire
title_fullStr Application of the amplitude-frequency formulation to a nonlinear vibration system typified by a mass attached to a stretched wire
title_full_unstemmed Application of the amplitude-frequency formulation to a nonlinear vibration system typified by a mass attached to a stretched wire
title_sort application of the amplitude-frequency formulation to a nonlinear vibration system typified by a mass attached to a stretched wire
author Akbarzade, M.
Farshidianfar, A.
author_facet Akbarzade, M.
Farshidianfar, A.
publishDate 2014
language English
container_title Прикладная механика
publisher Інститут механіки ім. С.П. Тимошенка НАН України
format Article
title_alt Применение амплитудно-частотного под- хода к нелинейным колебаниям системы в виде массы, присоединенной к растягиваемой проволоке
description The He’s Amplitude-Frequency Formulation is applied to study the periodic solutions of a strongly nonlinear system. This system corresponds to the motion of a mass attached to a stretched wire. The usefulness and effectiveness of the proposed technique is illustrated. The results are compared with exact solutions and those obtained by the harmonic balance show a good accuracy. Approximate frequencies are valid for the complete range of vibration amplitudes. Excellent ag Амплітудно-частотний підхід Хе застосовано до вивчення періодичних розв’язків сильно нелінійних систем. Проілюстровано корисність і ефективність запропонованої методики. Результати порівняно з точними розв‘язками і розв‘язками, отриманими на основі енергетичного балансу. Порівняння показало добру точність. Наближено обчислені частоти виявилися вірними у всьому діапазоні амплітуд коливань. Продемонстровано і обговорено узгодженість між наближеними та точними значеннями частот.
issn 0032-8243
url https://nasplib.isofts.kiev.ua/handle/123456789/100638
citation_txt Application of the amplitude-frequency formulation to a nonlinear vibration system typified by a mass attached to a stretched wire / M. Akbarzade, A. Farshidianfar // Прикладная механика. — 2014. — Т. 50, № 4. — С. 137-144. — Бібліогр.: 19 назв. — англ.
work_keys_str_mv AT akbarzadem applicationoftheamplitudefrequencyformulationtoanonlinearvibrationsystemtypifiedbyamassattachedtoastretchedwire
AT farshidianfara applicationoftheamplitudefrequencyformulationtoanonlinearvibrationsystemtypifiedbyamassattachedtoastretchedwire
AT akbarzadem primenenieamplitudnočastotnogopodhodaknelineinymkolebaniâmsistemyvvidemassyprisoedinennoikrastâgivaemoiprovoloke
AT farshidianfara primenenieamplitudnočastotnogopodhodaknelineinymkolebaniâmsistemyvvidemassyprisoedinennoikrastâgivaemoiprovoloke
first_indexed 2025-11-25T22:42:42Z
last_indexed 2025-11-25T22:42:42Z
_version_ 1850569747205193728
fulltext 2014 ПРИКЛАДНАЯ МЕХАНИКА Том 50, № 4 ISSN0032–8243. Прикл. механика, 2014, 50, №4 137 M . A k b a r z a d e , A . F a r s h i d i a n f a r APPLICATION OF THE AMPLITUDE-FREQUENCY FORMULATION TO A NONLINEAR VIBRATION SYSTEM TYPIFIED BY A MASS ATTACHED TO A STRETCHED WIRE Department of Mechanical Engineering, Faculty of Engineering, Ferdowsi University Of Mashhad, Mashhad, Iran e-mail: mehdiakbarzade@yahoo.com Abstract. The He’s Amplitude-Frequency Formulation is applied to study the periodic solutions of a strongly nonlinear system. This system corresponds to the motion of a mass attached to a stretched wire. The usefulness and effectiveness of the proposed technique is illustrated. The results are compared with exact solutions and those obtained by the har- monic balance show a good accuracy. Approximate frequencies are valid for the complete range of vibration amplitudes. Excellent agreement of the approximate frequencies with the exact one are demonstrated and discussed. Key words: Nonlinear vibration system; Amplitude-Frequency Formulation; Periodic Solution; Angular frequencies. 1. Introduction. The study of nonlinear problems is of crucial importance not only in all areas of physics but also in engineering, since most phenomena in our world are essentially nonlinear and are described by nonlinear equations recently many new approaches to nonlinear problems have been proposed, for example, the variational iteration method [16], the homotopy perturba- tion method [17 – 19], energy balance method [12 – 15] and the parameter-expanding method [11]. To solve nonlinear problems, He proposed an amplitude–frequency formulation for nonlinear oscillators, which was deduced using an ancient Chinese mathematics method and it is now widely used by many authors [3 – 10]. In this paper He’s frequency-amplitude formulation is used to solve nonlinear vibration system of conservative single degree of freedom. Consider the motion of a particle of mass m attached to the centre of a stretched elastic wire [1, 2] and coefficient of stiffness of elastic wire equal to k . The length of the elastic wire when no force is applied to it is 2a . We assume that the movement of the particle is one-dimensional and this is constrained to move only in the horizontal x direction. As we can see in Fig. 1, the ends of the wire are fixed a distance 2d a part. Length d can be longer or equal to a . If d a , the wire is not stretched for 0x  , and there is no tension in each part of it. However, if d a , the wire is stretched for 0x  , and the tension in each part of the wire is ( - )k d a The equation of motion is given by the following nonlin- ear differential equation [2]: 2 2 2 2 2 2 0 d x kax m kx dt d x     . (1) 138 Fig. 1 Mass attached to a stretched wire. With the initial condition of (0) , (0) 0 dx x A dt   . Two dimensionless variables y and  can be constructed as follows: 2 , x k y t d m   . (2) Substituting these dimensionless variables into Eq. (1) gives 2 2 2 0 , 0< 1 1 d y y y d y         . (3) With the initial condition of (0) , (0) 0 dy y A d   . In Eq. (3) we have defined the following parameters: 0 , x a A d d   , (4) as 0 a d  it follows that 0 1  . Eq. (3) is an example of a conservative nonlinear oscillatory system in which the restor- ing force has an irrational form [1, 2] and this system and has the first integral. 2 1 ( ) 0 2 dy V y E d         , (5) where E is the ‘‘total energy’’ of the nonlinear oscillator and the potential function has the irrational form [1] 2 21 ( ) 1 2 V y y y     . (6) All the motions corresponding to Eq. (3) are periodic [1]; the system will oscillate within symmetric bounds[ , ]A A , and the angular frequency and corresponding periodic solution of the nonlinear oscillator are dependent on the amplitude A . 139 The main objective of this paper is to solve Eq. (3) by applying the first-order Ampli- tude-Frequency Formulation, and to compare the approximate frequency obtained with the exact one and with another approximate frequency obtained applying the harmonic balance method. 2. Solution method. Considers the following general nonlinear oscillators in the form:  ( ) ( ), ( ), ( ) 0u t f u t u t u t    . (7) Oscillation systems contain two important physical parameters, i.e. the frequency and the amplitude of oscillation, A . So let us consider such initial conditions (0) , (0) 0.u A u  According to He’s amplitude-frequency formulation [8 – 10], we choose two trial func- tions 1 cosu A t and 2 cos .u A t Substituting 1u and 2u into Eq. (7), we obtain, respectively, the following residuals:  1 1 1 1 1( ) ( ), ( ), ( )R u t f u t u t u t    (8) and  2 2 2 2 2( ) ( ), ( ), ( )R u t f u t u t u t    . (9) In order to use He’s amplitude-frequency formulation [6 – 9], we set 1 4 11 1 1 0 1 4 cos( ) , 2 T R R t dt T T   , (10) 2 4 22 2 2 0 2 4 2 cos( ) , T R R t dt T T     . (11) Applying He’s frequency-amplitude formulation [8 – 10] we have 2 2 2 1 22 2 11 22 11 R R R R      , (12) where 1 21 ,     . (13) 3. Results and discussion for small amplitudes (0 A<<1) . Considering Eq. (3), for small values of A we can write 2 2 1 1 1 , 0 A<<1 2(1 ) y y        . (14) We can write Eq. (3) in the form of 2 2 2 1 1 0, 0< 1 2 d y y y y d             , (15) with initial conditions of (0) , (0) 0u A u  . 140 According to He’s amplitude-frequency formulation [4 – 6]; we obtain, respectively, the following residuals: 2 2 1 1 cos( ) 1 cos ( ) 2 R A t A t        (16) and 2 2 2 2 1 cos( ) cos( ) cos( ) 1 cos ( ) 2 R A A A A              . (17) In the equations, the frequency of oscillation is and the amplitude of oscillation is A . In order to use He’s amplitude-frequency formulation [6 – 8], we set  1 2 4 11 1 1 0 1 8 34 1 cos( ) , 2 16 T A A R R d T T             (18) and  2 2 2 4 22 2 2 0 2 8 3 8 84 1 2 cos( ) , 16 T A A R R d T T                  . (19) Applying He’s frequency-amplitude formulation [6 – 8], we, therefore, obtain the first order approximate solution for small amplitudes 23 1 8 A     . (20) For the first approaching Eq. (20) at 0A and for 1  we have 0 lim ( ) (1 ) A A     . 4. Results and discussion for large amplitudes (A>>0) . Eq. (3) can be rewritten in a form that does not contain the square-root expression [2] 22 2 2 2 2 0 (1 ) d y y y d y            , (21) with initial condition of (0) , (0) 0 dy y A d   . According to He’s amplitude-frequency formulation [4 – 6]; we obtain, respectively, the following residuals: 2 2 2 1 2 2 cos ( ) 1 cos ( ) A R A       (22) and 2 2 2 2 2 2 2 2 cos ( ) ( cos( ) cos( )) 1 cos ( ) A R A A A           . (23) In the equations, the frequency of oscillation is and the amplitude of oscillation is A . In order to use He’s amplitude-frequency formulation [6 – 8], we set 1 2 2 2 4 11 1 1 0 2 1 2 1 arctan 4 1 cos( ) , 2 1 T A A A h A R R d T T A A                      (24) 141 and 2 3 2 44 22 2 0 2 2 4 2 1 cos( ) ( 2 1 3 1 T R R d A A T A A             2 3 2 2 3 2 2 2 22 2 3 arctan 4 1 2 1 3 1 ), 1 A h A A A A A A T A                  . (25) Applying He’s frequency-amplitude formulation [6 – 8], we, therefore, obtain the first order approximate solution 3 2 6 2 4 2 3 2 2 2 2 2 1 6 6 6 1 arctan 2 1 2 1 A A A A A A A h A A A A                 . (26) It is possible to solve Eq. (3) by applying the harmonic balance method. Following the first-order harmonic balance method, a reasonable and simple initial approximation satisfy- ing the conditions in Eq. (3) would be [2] cosy A  . (27) Substitution of Eq. (27) into Eq. (3) gives 2 2 cos( ) cos( ) cos( ) 0 1 cos ( ) A A A A           . (28) The power-series expansion of 21 y y is [2]   2 1 12 1 (2 1)! ( 1) 2 ! 1 !1 n n n n y n y y n ny           (29) Substituting Eq. (29) into Eq. (28) and taking into account Eq. (27) gives   2 2 2 1 1 1 (2 1)! cos( ) cos( ) cos( ) ( 1) cos ( ) 0 2 ! 1 ! n n n n n n A n n                     . (30) The formula that allows us to obtain the odd power of the cosine is 2 1 2 2 1 2 1 2 11 cos ( ) cos( ) cos(3 ) ... cos(2 1)( ) 2 -1 0 n n n n n n n n                                      .(31 ) Substituting Eq. (31) into Eq. (30) gives 2 2 2 1 0 1 cos( ) (high order harmonics)=0n n n c A                , (32) where the coefficients 2 1nc  are given by 1 1c  and 142    2 1 4 1 2 (2 1)!(2 1)! ( 1) , 1 2 ( !) 1 ! 1 ! n n n n n c n n n n          . (33) For the first-order harmonic to be equal to zero, it is necessary to set the coefficient of cos( ) equal to zero in Eq. (32), then 2 2 1 0 1 n n n c A        . (34) For the second-order harmonic we obtain [2] 1 2 4 62 3 3 13 1 ( ( )) , ( ) 1 ... 4 64 512 f A f A A A A          . (35) Table 1. Comparison of He’s frequency-amplitude formulation (Eq. (20)) with harmonic balance frequency (Eq. (35)) for small values of A . ( =0.5) Table 1 A He’s frequency-amplitude formulation harmonic balance frequency 0.01 0.7071 0.7071 0.05 0.7074 0.7075 0.1 0.7084 0.7085 0.2 0.7124 0.7126 0.3 0.7189 0.7190 0.5 0.7395 0.7369 Table 2. Comparison of He’s frequency-amplitude formulation (Eq. (20)) with harmonic balance frequency (Eq. (35)) for small values of A . ( =1.0) Table2 A He’s frequency-amplitude formulation harmonic balance frequency 0.01 0.0061 0.0063 0.05 0.0306 0.0316 0.1 0.0612 0.0630 0.2 0.1225 0.1249 0.3 0.1837 0.1844 0.5 0.3062 0.2935 The exact frequency can then be derived as follows [2]: 1 1 2 2 2 2 202 (1 ) 2 ( 1 1 ) exact Adu A u A A u                 . (36) Now we are going to obtain an asymptotic representation for large amplitudes. We con- sider the expression for the exact frequency exact Eq. (36) and we do the change 1/A B . For large amplitudes A we have 0B  . Taking this into account, and doing the power-series expansion of the result for small values of B , we obtain [2] 1 1 2 2 2 202 1 2 ( 1 ) exact du u B B B u                 (37) and 143 1 1 2 2 2 2 2 2 0 1 3 ... 2 1 (1 ) 1 2(1 ) 1 exact B B du u u u u u                        . (38) The power-series expansion for the exact frequency for small values of B (large values of A ) is: 1 2 2 2 2 2 2 2( 2) ... 1 ... 2 2exact B B A A                       = 2 2 0.63662 0.23134 1 ... A A       . (39) Table 3 Comparison of He’s frequency-amplitude formulation frequency (Eq. (26)) with exact frequency (Eq. (39)) for large amplitude ( = 0.5). A He’s frequency-amplitude formulation Exact frequency Error (%) 5 0.9398 0.9340 0.6176 6 0.9495 0.9453 0.4362 7 0.9565 0.9533 0.3305 8 0.9898 0.9593 0.2631 9 0.9618 0.9639 0.2171 10 0.9694 0.9676 0.1842 Table 4 Comparison of He’s frequency-amplitude formulation frequency (Eq. (26)) with exact frequency (Eq. (39)) for large amplitude ( = 1). A He’s frequency-amplitude formulation Exact frequency Error (%) 5 0.8755 0.8634 1.3937 6 0.8961 0.8875 0.9706 7 0.9109 0.9043 0.0715 8 0.9221 0.9168 0.7283 9 0.9308 0.9264 0.5755 10 0.9377 0.9340 0.3984 The method of He’s frequency-amplitude formulation is capable of producing analytical approximation to the solution to the nonlinear system, valid even for the case where the am- plitude are not small but we see that harmonic balance solution is valid only for small ampli- tude. 5. Conclusions. He’s frequency-amplitude formulation has been used to solve nonlinear vibration sys- tem typified by a mass attached to a stretched wire. With the procedure, the analytical ap- proximate frequency and the corresponding periodic solution, valid for small as well as large amplitudes of oscillation, can be obtained. The method, which is proved to be a power- ful mathematical tool to the search for angular frequencies of nonlinear vibration systems, can be easily extended to any nonlinear equation, and the present letter can be used as para- digms for many other applications in searching for periodic solutions, limit cycles or other approximate solutions for real-life physics problems. We think that the method have great potential which still needs further development. 144 Р Е ЗЮМ Е . Амплітудно-частотний підхід Хе застосовано до вивчення періодичних розв’язків сильно нелінійних систем. Проілюстровано корисність і ефективність запропонованої методики. Результати порівняно з точними розв‘язками і розв‘язками, отриманими на основі енерге- тичного балансу. Порівняння показало добру точність. Наближено обчислені частоти виявилися вір- ними у всьому діапазоні амплітуд коливань. Продемонстровано і обговорено узгодженість між на- ближеними та точними значеннями частот. 1. Mickens R.E. Oscillations in Planar Dynamics Systems, World Scientific. – Singapore, 1996. 2. Belendez A., Hernandez A., Bele´ndez T., Alvarez M.L., Gallego S., Ortuno M., Neipp C.. Application of the harmonic balance method to a nonlinear oscillator typified by a mass attached to a stretched wire // J. Sound and Vibr. – 2007. – 302 – P. 1018–1029. 3. He J.H. Some asymptotic methods for strongly nonlinear equations // Int. J. Modern Phys. B. – 2006. – 20, N10. – P. 1141 – 1199. 4. He J.H. Аn improved amplitude-frequency formulation for nonlinear oscillators // Int. J. Nonlin. Sci. and Numer. Simul. – 2008. – 9, N2. – P. 211 – 212. 5. Zhao L. Chinese mathematics for nonlinear oscillators // Topolog. Meth. Nonlin. Analysis. – 2008 – 31, N2. – P. 383 – 387. 6. Fan J. Application of He's frequency-amplitude formulation to the Duffing-harmonic oscillator // To- polog. Meth. Nonlin. Analysis. – 2008. – 31, N2. – P. 389 – 394. 7. He J.H. An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering // Int. J. Modern Phys B. – 2008. – 22, N21. – P. 3487 – 3578. 8. Geng L., Cai X.C. He’s frequency formulation for nonlinear oscillators // Europ. J. Phys. – 2007. – 28. – P. 923 – 931. 9. Zhang H. L. Application of He's frequency-amplitude formulation to an x(1/3) force Nonlinear oscillator // Int. J. Nonlin. Sci. and Numer. Simul. – 2008. – 9, N3. – P. 297 – 300. 10. Tao Z. L. Frequency–amplitude relationship of the Duffing-harmonic oscillator // Topolog. Meth. Nonlin. Analysis. – 2008. – 31. – P. 279 – 85. 11. Zengin F.O., Kaya M.O., Demirbag S.A. Application of the parameter-expansion method to nonlinear oscillators with discontinuities // Int. J. Nonlin. Sci. and Numer. Simul. – 2008 – 9, N 3. – P. 267 – 270. 12. Akbarzade M., Ganji D. D., Pashaei H. Analysis of nonlinear oscillators with nu force by he’s energy balance method // Progress in Electromagnetics Research C. – 2008 – 3. – P. 57 – 66. 13. Pashaei H., Ganji D. D., Akbarzade M. Application of the energy balance method for strongly nonlinear oscillators // Progress in Electromagnetics Research M. – 2008. – 2. – P. 47 – 56. 14. Babazadeh H., Ganji D. D., Akbarzade M. He’s energy balance method to evalute the effect of amplitude on the natural frequency in nonlinear vibration systems // Progress in Electromagnetics Research. M. – 2008. – 4. – P. 143 – 154. 15. Ganji D. D., Malidarreh N.R., Akbarzade M. Comparison of Energy Balance Period for Arising Nonlin- ear Oscillator Equations (He’s energy balance period for nonlinear oscillators with and without discon- tinuities) // Acta Appl. Math. – 2009. – 108 – P. 353 – 362. 16. He J.H., Wu G.C., Austin F. The Variational Iteration Method Which Should Be Followed // Nonlinear Science Letters. A. Mathematics, Physics and Mechanics. – 2010. – 1, N1. – P. 1 – 30. 17. Ganji D.D., Sadighi A. Application of He’s homotopy-perturbation method to nonlinear coupled systems of reaction–diffusion equations // Int. J. Nonlin. Sci. and Numer. Simul. – 2006. – 7, N4. – P. 411 – 418). 18. Fereidoon A., Rostamiyan Y., Akbarzade M. Davood Domiri Ganji. Application of He’s homotopy per- turbation method to nonlinear shock damper dynamics // Arch. Appl. Mech. – 2010. – 80, N6. – P. 641 – 649. 19. He J.H. New interpretation of homotopy perturbation method // Int. J. Modern Phys. – 2006. – B 20, N18. – P. 2561 – 2568. *From the Editorial Board: The article corresponds completely to submitted manuscript. Поступила 26.01.2011 Утверждена в печать 03.12.2013