Метод удвоения последовательности весов предметов в задаче Меркля—Хеллмана шифрования ранцами

Для криптосхемы Меркля—Хеллмана шифрования ранцами разработан алгоритм формирования обычной последовательности из сверхвозрастающей, основанный на введенных понятиях непрямых модульных преобразований и частичных инверсий, в котором для формирования «лазейки» применяются удвоенные последовательности...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Электронное моделирование
Datum:2013
1. Verfasser: Винничук, С.Д.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України 2013
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/100843
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Метод удвоения последовательности весов предметов в задаче Меркля—Хеллмана шифрования ранцами / С.Д. Винничук // Электронное моделирование. — 2013. — Т. 35, № 3. — С. 3-22 . — Бібліогр.: 2 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-100843
record_format dspace
spelling Винничук, С.Д.
2016-05-27T15:56:35Z
2016-05-27T15:56:35Z
2013
Метод удвоения последовательности весов предметов в задаче Меркля—Хеллмана шифрования ранцами / С.Д. Винничук // Электронное моделирование. — 2013. — Т. 35, № 3. — С. 3-22 . — Бібліогр.: 2 назв. — рос.
0204-3572
https://nasplib.isofts.kiev.ua/handle/123456789/100843
621.391.7 + 681.3.067
Для криптосхемы Меркля—Хеллмана шифрования ранцами разработан алгоритм формирования обычной последовательности из сверхвозрастающей, основанный на введенных понятиях непрямых модульных преобразований и частичных инверсий, в котором для формирования «лазейки» применяются удвоенные последовательности весов предметов. Показано, что при таком подходе для k-кратно итерируемой ранцевой системы каждому элементу сверхвозрастающей последовательности может соответствовать 2^k вариантов элемента обычной последовательности, а число вариантов обычной последовательности, при всех одинаковых параметрах модульных преобразований, может достигать 2^kL, где L — число бит в блоке информации. При этом обратная задача определения сверхвозрастающей последовательности по обычной может быть сведена к задаче целочисленного линейного программирования как вариантная при большом числе вариантов.
Для криптосхеми Меркля—Хеллмана шифрування рюкзаками розроблено алгоритм формування звичайної послідовності із надзростаючої, що грунтується на введених поняттях непрямих модульних перетворень і часткових інверсій, в якому при формуванні «люка» використовуються подвоєні послідовності ваг предметів. Показано, що при такому підході для k-кратно ітерованої системи кожному з елементів надзростаючої послідовності може відповідати 2^k варіантів елемента звичайної послідовності, а число варіантів звичайної послідовності при всіх однакових параметрах модульних перетворень, може досягати 2^kL,де L —число біт в блоці інформації. При цьому обернена задача визначення надзростаючої послідовності по звичайній може бути зведена до задачі цілочисельного лінійного програмування як варіантна при значному числі варіантів.
The algorithm for forming the normal sequence of eccessively ascending one, based on the introduced concepts of indirect modular transformations and partial inversions with the «loophole» formation on the basis of duplicate sequences of the items weights has been developed as part of the Merkle-Hellman cryptoscheme of knapsack encryption . It is shown that under such an approach 2^k options of the element of normal sequence may correspond to each element above the ascending sequence for the k-fold iterated backpack system, and the number of options of normal sequence, with all the same parameters of the modular transformations, may achieve 2^kL, where L is the number of bits in the data block. In this case, the inverse problem of determining the excessively ascending sequence of the normal one can be reduced to the problem of integer linear programming only as a variant with the great number of options.
ru
Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України
Электронное моделирование
Математические методы и модели
Метод удвоения последовательности весов предметов в задаче Меркля—Хеллмана шифрования ранцами
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Метод удвоения последовательности весов предметов в задаче Меркля—Хеллмана шифрования ранцами
spellingShingle Метод удвоения последовательности весов предметов в задаче Меркля—Хеллмана шифрования ранцами
Винничук, С.Д.
Математические методы и модели
title_short Метод удвоения последовательности весов предметов в задаче Меркля—Хеллмана шифрования ранцами
title_full Метод удвоения последовательности весов предметов в задаче Меркля—Хеллмана шифрования ранцами
title_fullStr Метод удвоения последовательности весов предметов в задаче Меркля—Хеллмана шифрования ранцами
title_full_unstemmed Метод удвоения последовательности весов предметов в задаче Меркля—Хеллмана шифрования ранцами
title_sort метод удвоения последовательности весов предметов в задаче меркля—хеллмана шифрования ранцами
author Винничук, С.Д.
author_facet Винничук, С.Д.
topic Математические методы и модели
topic_facet Математические методы и модели
publishDate 2013
language Russian
container_title Электронное моделирование
publisher Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України
format Article
description Для криптосхемы Меркля—Хеллмана шифрования ранцами разработан алгоритм формирования обычной последовательности из сверхвозрастающей, основанный на введенных понятиях непрямых модульных преобразований и частичных инверсий, в котором для формирования «лазейки» применяются удвоенные последовательности весов предметов. Показано, что при таком подходе для k-кратно итерируемой ранцевой системы каждому элементу сверхвозрастающей последовательности может соответствовать 2^k вариантов элемента обычной последовательности, а число вариантов обычной последовательности, при всех одинаковых параметрах модульных преобразований, может достигать 2^kL, где L — число бит в блоке информации. При этом обратная задача определения сверхвозрастающей последовательности по обычной может быть сведена к задаче целочисленного линейного программирования как вариантная при большом числе вариантов. Для криптосхеми Меркля—Хеллмана шифрування рюкзаками розроблено алгоритм формування звичайної послідовності із надзростаючої, що грунтується на введених поняттях непрямих модульних перетворень і часткових інверсій, в якому при формуванні «люка» використовуються подвоєні послідовності ваг предметів. Показано, що при такому підході для k-кратно ітерованої системи кожному з елементів надзростаючої послідовності може відповідати 2^k варіантів елемента звичайної послідовності, а число варіантів звичайної послідовності при всіх однакових параметрах модульних перетворень, може досягати 2^kL,де L —число біт в блоці інформації. При цьому обернена задача визначення надзростаючої послідовності по звичайній може бути зведена до задачі цілочисельного лінійного програмування як варіантна при значному числі варіантів. The algorithm for forming the normal sequence of eccessively ascending one, based on the introduced concepts of indirect modular transformations and partial inversions with the «loophole» formation on the basis of duplicate sequences of the items weights has been developed as part of the Merkle-Hellman cryptoscheme of knapsack encryption . It is shown that under such an approach 2^k options of the element of normal sequence may correspond to each element above the ascending sequence for the k-fold iterated backpack system, and the number of options of normal sequence, with all the same parameters of the modular transformations, may achieve 2^kL, where L is the number of bits in the data block. In this case, the inverse problem of determining the excessively ascending sequence of the normal one can be reduced to the problem of integer linear programming only as a variant with the great number of options.
issn 0204-3572
url https://nasplib.isofts.kiev.ua/handle/123456789/100843
citation_txt Метод удвоения последовательности весов предметов в задаче Меркля—Хеллмана шифрования ранцами / С.Д. Винничук // Электронное моделирование. — 2013. — Т. 35, № 3. — С. 3-22 . — Бібліогр.: 2 назв. — рос.
work_keys_str_mv AT vinničuksd metodudvoeniâposledovatelʹnostivesovpredmetovvzadačemerklâhellmanašifrovaniârancami
first_indexed 2025-12-07T16:58:45Z
last_indexed 2025-12-07T16:58:45Z
_version_ 1850869521223516160