Стереооператоры для 3D-систем, содержащих зеркало
Предложены прямой и обратный стереооператоры постоянного ракурса для двух видов 3D-систем, содержащих плоское зеркало. Определены условия и координаты места расположения наблюдателя перед зеркалом, удовлетворяющие требованиям эквивалентности визуализации в стереосистемах с зеркалом и без него. Получ...
Saved in:
| Published in: | Электронное моделирование |
|---|---|
| Date: | 2014 |
| Main Author: | |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України
2014
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/101072 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Стереооператоры для 3D-систем, содержащих зеркало / Ю.Н. Груц // Электронное моделирование. — 2014. — Т. 36, № 6. — С. 99-108. — Бібліогр.: 14 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-101072 |
|---|---|
| record_format |
dspace |
| spelling |
Груц, Ю.Н. 2016-05-30T15:18:53Z 2016-05-30T15:18:53Z 2014 Стереооператоры для 3D-систем, содержащих зеркало / Ю.Н. Груц // Электронное моделирование. — 2014. — Т. 36, № 6. — С. 99-108. — Бібліогр.: 14 назв. — рос. 0204-3572 https://nasplib.isofts.kiev.ua/handle/123456789/101072 004.923 Предложены прямой и обратный стереооператоры постоянного ракурса для двух видов 3D-систем, содержащих плоское зеркало. Определены условия и координаты места расположения наблюдателя перед зеркалом, удовлетворяющие требованиям эквивалентности визуализации в стереосистемах с зеркалом и без него. Получены математические зависимости для вычисления компонент вектора постоянного ракурса. Запропоновано прямий та зворотнiй стереооператори постійного ракурсу для двох видiв 3D-систем, які містять плоске дзеркало. Визначено умови та координати розташування спостерігача перед дзеркалом, які задовольняють вимогам еквівалентності відеоспостереження в системах с дзеркалом та без нього. Отримано математичні залежності для обчислювання компонент вектора постійного ракурсу. The theory of stereo conversion is based on the application of twomutually inverse formal mathematical operators (stereo operators). The direct and inverse stereo operators install a one-to-one correspondence between three-dimensional coordinates of any point in space and the stereo coordinates which can be displayed on the screen under the conditions of constant point of view. In this paper direct and inverse operators of stereo conversion have been applied to the analyses of two kinds of 3D-systems containing a flat mirror. The first kind is when the screen is located to the right of the observer at arbitrary angle. The second kind is when the screen is located above the observer at arbitrary angle. Such conditions and the coordinates of the observer location in front of the mirror have been obtained to satisfy the requirements of the visualization equivalence of stereo systems with themirror and without mirror. ru Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України Электронное моделирование Применение методов и средств моделирования Стереооператоры для 3D-систем, содержащих зеркало Stereooperators for 3D-system with mirror Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Стереооператоры для 3D-систем, содержащих зеркало |
| spellingShingle |
Стереооператоры для 3D-систем, содержащих зеркало Груц, Ю.Н. Применение методов и средств моделирования |
| title_short |
Стереооператоры для 3D-систем, содержащих зеркало |
| title_full |
Стереооператоры для 3D-систем, содержащих зеркало |
| title_fullStr |
Стереооператоры для 3D-систем, содержащих зеркало |
| title_full_unstemmed |
Стереооператоры для 3D-систем, содержащих зеркало |
| title_sort |
стереооператоры для 3d-систем, содержащих зеркало |
| author |
Груц, Ю.Н. |
| author_facet |
Груц, Ю.Н. |
| topic |
Применение методов и средств моделирования |
| topic_facet |
Применение методов и средств моделирования |
| publishDate |
2014 |
| language |
Russian |
| container_title |
Электронное моделирование |
| publisher |
Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України |
| format |
Article |
| title_alt |
Stereooperators for 3D-system with mirror |
| description |
Предложены прямой и обратный стереооператоры постоянного ракурса для двух видов 3D-систем, содержащих плоское зеркало. Определены условия и координаты места расположения наблюдателя перед зеркалом, удовлетворяющие требованиям эквивалентности визуализации в стереосистемах с зеркалом и без него. Получены математические зависимости для вычисления компонент вектора постоянного ракурса.
Запропоновано прямий та зворотнiй стереооператори постійного ракурсу для двох видiв 3D-систем, які містять плоске дзеркало. Визначено умови та координати розташування спостерігача перед дзеркалом, які задовольняють вимогам еквівалентності відеоспостереження в системах с дзеркалом та без нього. Отримано математичні залежності для обчислювання компонент вектора постійного ракурсу.
The theory of stereo conversion is based on the application of twomutually inverse formal mathematical operators (stereo operators). The direct and inverse stereo operators install a one-to-one correspondence between three-dimensional coordinates of any point in space and the stereo coordinates which can be displayed on the screen under the conditions of constant point of view. In this paper direct and inverse operators of stereo conversion have been applied to the analyses of two kinds of 3D-systems containing a flat mirror. The first kind is when the screen is located to the right of the observer at arbitrary angle. The second kind is when the screen is located above the observer at arbitrary angle. Such conditions and the coordinates of the observer location in front of the mirror have been obtained to satisfy the requirements of the visualization equivalence of stereo systems with themirror and without mirror.
|
| issn |
0204-3572 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/101072 |
| citation_txt |
Стереооператоры для 3D-систем, содержащих зеркало / Ю.Н. Груц // Электронное моделирование. — 2014. — Т. 36, № 6. — С. 99-108. — Бібліогр.: 14 назв. — рос. |
| work_keys_str_mv |
AT grucûn stereooperatorydlâ3dsistemsoderžaŝihzerkalo AT grucûn stereooperatorsfor3dsystemwithmirror |
| first_indexed |
2025-12-01T07:20:35Z |
| last_indexed |
2025-12-01T07:20:35Z |
| _version_ |
1850859531478761472 |