Axisymmetric mixed free boundary value problem
Mixed Free Boundary Value Problem for Laplace equation in axisymmetrical case is considered. We take into consideration mean and Gauss curvatures of the free boundary. The problem of this type arise on investigating thermal equillibrium of two phases. We take into account capillary forces acting in...
Збережено в:
| Дата: | 2007 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/10114 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Axisymmetric mixed free boundary value problem / E. Shcherbakov // Нелинейные граничные задачи. — 2007. — Т. 17. — С. 130-150. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-10114 |
|---|---|
| record_format |
dspace |
| spelling |
Shcherbakov, E. 2010-07-23T14:25:06Z 2010-07-23T14:25:06Z 2007 Axisymmetric mixed free boundary value problem / E. Shcherbakov // Нелинейные граничные задачи. — 2007. — Т. 17. — С. 130-150. — Бібліогр.: 12 назв. — англ. 0236-0497 https://nasplib.isofts.kiev.ua/handle/123456789/10114 Mixed Free Boundary Value Problem for Laplace equation in axisymmetrical case is considered. We take into consideration mean and Gauss curvatures of the free boundary. The problem of this type arise on investigating thermal equillibrium of two phases. We take into account capillary forces acting in intermediate layer separating different phases. Plane model of the equillibrium without capillary forces was considered in the paper([1]). We consider variational problem whose solution is generalized solution of the boundary value problem.We prove regularity of solution, analyticity of free boundary and investigate its properties. en Інститут прикладної математики і механіки НАН України Axisymmetric mixed free boundary value problem Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Axisymmetric mixed free boundary value problem |
| spellingShingle |
Axisymmetric mixed free boundary value problem Shcherbakov, E. |
| title_short |
Axisymmetric mixed free boundary value problem |
| title_full |
Axisymmetric mixed free boundary value problem |
| title_fullStr |
Axisymmetric mixed free boundary value problem |
| title_full_unstemmed |
Axisymmetric mixed free boundary value problem |
| title_sort |
axisymmetric mixed free boundary value problem |
| author |
Shcherbakov, E. |
| author_facet |
Shcherbakov, E. |
| publishDate |
2007 |
| language |
English |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Mixed Free Boundary Value Problem for Laplace equation in axisymmetrical case is considered. We take into consideration mean and Gauss curvatures of the free boundary. The problem of this type arise on investigating thermal equillibrium of two phases. We take into account capillary forces acting in intermediate layer separating different phases. Plane model of the equillibrium without capillary forces was considered in the paper([1]). We consider variational problem whose solution is generalized solution of the boundary value problem.We prove regularity of solution, analyticity of free boundary and investigate its properties.
|
| issn |
0236-0497 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/10114 |
| citation_txt |
Axisymmetric mixed free boundary value problem / E. Shcherbakov // Нелинейные граничные задачи. — 2007. — Т. 17. — С. 130-150. — Бібліогр.: 12 назв. — англ. |
| work_keys_str_mv |
AT shcherbakove axisymmetricmixedfreeboundaryvalueproblem |
| first_indexed |
2025-12-02T02:07:46Z |
| last_indexed |
2025-12-02T02:07:46Z |
| _version_ |
1850861370031996928 |