Однопараметрическая оптимизация аппроксимационных свойств неявных разностных методов повышенной точности решения начально-краевых задач типа диффузии

Численно решена задача однопараметрической минимизации чебышевского уклонения символа m-стадийных разностных методов повышенной точности решения начально-краевых задач для параболических уравнений второго порядка с самосопряженным эллиптическим оператором. Оптимизируемые методы реализованы с помощью...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Электронное моделирование
Дата:2009
Автор: Шихалиев, С.З.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України 2009
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/101509
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Однопараметрическая оптимизация аппроксимационных свойств неявных разностных методов повышенной точности решения начально-краевых задач типа диффузии / С.З. Шихалиев // Электронное моделирование. — 2009. — Т. 31, № 4. — С. 113-118. — Бібліогр.: 8 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Численно решена задача однопараметрической минимизации чебышевского уклонения символа m-стадийных разностных методов повышенной точности решения начально-краевых задач для параболических уравнений второго порядка с самосопряженным эллиптическим оператором. Оптимизируемые методы реализованы с помощью алгоритма полиномиального ускорения. Оптимизация методов выполнена при уменьшении максимально возможного порядка аппроксимации опрераторной экспоненты на единицу [1]. Наведено чисельний розв’язок задачі однопараметричної мінімізації чебишевського відхилення символу m-стадійних різницевих методів підвищеної точності розв’язку початково-крайових задач для параболічних рівнянь другого порядку з самосполученим еліптичним оператором. Методи, що оптимізуються, реалізовано за алгоритмом поліноміального прискорення. Оптимізацію методів виконано зменшенням максимально можливого порядку апроксимації опрераторної експоненти на одиницю [1]. A problem of one-parameter minimization of the Chebyshev deviation of the symbol of m-stage difference methods of high accuracy for solution of initial-boundary problems of the second-order parabolic equations with self-conjugate elliptical operator has been numerically solved. The optimized methods have been realized by the algorithm of polynomial acceleration. The methods optimization was realized under the decrease of maximum-possible order of approximation of the operator exponent by a unit [1].
ISSN:0204-3572