Однопараметрическая оптимизация аппроксимационных свойств неявных разностных методов повышенной точности решения начально-краевых задач типа диффузии
Численно решена задача однопараметрической минимизации чебышевского уклонения символа m-стадийных разностных методов повышенной точности решения начально-краевых задач для параболических уравнений второго порядка с самосопряженным эллиптическим оператором. Оптимизируемые методы реализованы с помощью...
Збережено в:
| Опубліковано в: : | Электронное моделирование |
|---|---|
| Дата: | 2009 |
| Автор: | |
| Формат: | Стаття |
| Мова: | Russian |
| Опубліковано: |
Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України
2009
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/101509 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Однопараметрическая оптимизация аппроксимационных свойств неявных разностных методов повышенной точности решения начально-краевых задач типа диффузии / С.З. Шихалиев // Электронное моделирование. — 2009. — Т. 31, № 4. — С. 113-118. — Бібліогр.: 8 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Численно решена задача однопараметрической минимизации чебышевского уклонения символа m-стадийных разностных методов повышенной точности решения начально-краевых задач для параболических уравнений второго порядка с самосопряженным эллиптическим оператором. Оптимизируемые методы реализованы с помощью алгоритма полиномиального ускорения. Оптимизация методов выполнена при уменьшении максимально возможного порядка аппроксимации опрераторной экспоненты на единицу [1].
Наведено чисельний розв’язок задачі однопараметричної мінімізації чебишевського відхилення символу m-стадійних різницевих методів підвищеної точності розв’язку початково-крайових задач для параболічних рівнянь другого порядку з самосполученим еліптичним оператором. Методи, що оптимізуються, реалізовано за алгоритмом поліноміального прискорення. Оптимізацію методів виконано зменшенням максимально можливого порядку апроксимації опрераторної експоненти на одиницю [1].
A problem of one-parameter minimization of the Chebyshev deviation of the symbol of m-stage difference methods of high accuracy for solution of initial-boundary problems of the second-order parabolic equations with self-conjugate elliptical operator has been numerically solved. The optimized methods have been realized by the algorithm of polynomial acceleration. The methods optimization was realized under the decrease of maximum-possible order of approximation of the operator exponent by a unit [1].
|
|---|---|
| ISSN: | 0204-3572 |