Математическая модель и метод решения задачи размещения сфероцилинд-ров и цилиндров с учетом специальных ограничений

Построены нормализованные Ф-функции для двух сфероцилиндров, цилиндра и сфероцилиндра. На основании этих Ф-функций построена математическая модель оптимизационной задачи размещения сфероцилиндров и цилиндров в призме с учетом минимально допустимых расстояний. Исследованы особенности построенной мате...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Электронное моделирование
Datum:2008
Hauptverfasser: Стоян, Ю.Г., Чугай, А.М.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України 2008
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/101591
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Математическая модель и метод решения задачи размещения сфероцилинд-ров и цилиндров с учетом специальных ограничений / Ю.Г. Стоян, А.М. Чугай // Электронное моделирование. — 2008. — Т. 30, № 5. — С. 3-20. — Бібліогр.: 15 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Построены нормализованные Ф-функции для двух сфероцилиндров, цилиндра и сфероцилиндра. На основании этих Ф-функций построена математическая модель оптимизационной задачи размещения сфероцилиндров и цилиндров в призме с учетом минимально допустимых расстояний. Исследованы особенности построенной математической модели, на основании которых разработан метод решения задачи. Приведен численный пример. Побудовано нормалізовані Ф-функції для двох сфероциліндрів, циліндру та сфероциліндру. На основі цих Ф-функцій побудовано математичну модель оптимізаційної задачі розміщення сфероциліндрів та циліндрів у призмі з урахуванням мінімально припустимих відстаней. Досліджено властивості побудованої математичної моделі, на основі яких розроблено метод розв’язання задачі. Наведено чисельний приклад. In the paper the normalized Ф-functions for pairs of spherocylinders, spherocylinder and cylinder are constructed. Based on these Ф-functions the mathematical model is suggested for the optimization problem of packing spherocylinders and cylinders into a prism taking into account the minimum permissible distances. The features of the mathematical model are investigated, based on which the problem-solving procedure is developed. A numerical example is given.
ISSN:0204-3572