Численное моделирование теплообмена и гидродинамики при лазерно-плазменной обработке металлических материалов

Предложена приближенная математическая модель, описывающая тепловые и гидродинамические процессы при комбинированной лазерно-плазменной наплавке. Рассматривается схема быстродвижущегося источника нагрева, обобщающая известную схему Н. Н. Рыкалина на случай совместного конвективно-кондуктивного пер...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Автоматическая сварка
Datum:2013
Hauptverfasser: Борисов, Ю.С., Демченко, В.Ф., Лесной, А.Б., Хаскин, В.Ю., Шуба, И.В.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут електрозварювання ім. Є.О. Патона НАН України 2013
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/102260
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Численное моделирование теплообмена и гидродинамики при лазерно-плазменной обработке металлических материалов / Ю.С. Борисов, В.Ф. Демченко, А.Б. Лесной, В.Ю. Хаскин, И.В. Шуба // Автоматическая сварка. — 2013. — № 04 (720). — С. 3-8. — Бібліогр.: 8 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Предложена приближенная математическая модель, описывающая тепловые и гидродинамические процессы при комбинированной лазерно-плазменной наплавке. Рассматривается схема быстродвижущегося источника нагрева, обобщающая известную схему Н. Н. Рыкалина на случай совместного конвективно-кондуктивного переноса энергии в расплавленном металле. Плотности тепловых источников лазерного и плазменного источников нагрева различной мощности полагаются распределенными на поверхности пластины по нормальному закону с различными радиусами тепловых пятен; комбинированный источник полагается аддитивным. Уравнение локального теплового баланса на поверхности обрабатываемого изделия учитывает теплообмен излучением и потери тепла на испарение. Полагается, что движение расплава в условиях плазменного нагрева косвенного действия осуществляется под воздействием подъемной силы Архимеда и термокапиллярной силы. Проведена верификация математической модели и описаны результаты вычислительных экспериментов по исследованию формирования проплавленной зоны при воздействии лазерного и комбинированного лазерно-плазменного источников нагрева. Показано, что доминирующим силовым фактором, определяющим гидродинамику расплава, является сила Марангони. Изучено влияние конвективного переноса энергии на формирование расплавленной зоны. Библиогр. 8, табл. 4, рис. 8.
ISSN:0005-111X