Обратная геометрическая задача для упруго-жидкой слоистой среды
Рассмотрена плоская задача о вынужденных колебаниях идеальной жидкости, ограниченной сверху упругим слоем с неровной нижней поверхностью. Построено решение обратной задачи об определении формы нижней поверхности по характеру колебаний верхней. Для решения прямой задачи предлагаются три подхода - мет...
Gespeichert in:
| Datum: | 2005 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
Інститут гідромеханіки НАН України
2005
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/1026 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Обратная геометрическая задача для упруго-жидкой слоистой среды / А. О. Ватульян, П. С. Углич // Акуст. вісн. — 2005. — Т. 8, N 4. — С. 20-28. — Бібліогр.: 37 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-1026 |
|---|---|
| record_format |
dspace |
| spelling |
Ватульян, А.О. Углич, П.С. 2008-07-15T08:56:03Z 2008-07-15T08:56:03Z 2005 Обратная геометрическая задача для упруго-жидкой слоистой среды / А. О. Ватульян, П. С. Углич // Акуст. вісн. — 2005. — Т. 8, N 4. — С. 20-28. — Бібліогр.: 37 назв. — рос. 1028-7507 https://nasplib.isofts.kiev.ua/handle/123456789/1026 534.26 Рассмотрена плоская задача о вынужденных колебаниях идеальной жидкости, ограниченной сверху упругим слоем с неровной нижней поверхностью. Построено решение обратной задачи об определении формы нижней поверхности по характеру колебаний верхней. Для решения прямой задачи предлагаются три подхода - метод малого параметра, метод граничного элемента, а также приближение Борна. Решение обратной задачи сведено к решению интегрального уравнения Фредгольма первого рода. Приведены результаты численного эксперимента. Розглянуто плоску задачу про вимушені коливання стисливої ідеальної рідини, обмеженої зверху пружним шаром з нерівною нижньою поверхнею. Побудовано розв'язок зворотної задачі про визначення форми нижньої поверхні за характером коливань верхньої. Для розв'язання прямої задачі запропоновані три підходи - метод малого параметру, метод граничного елемента, а також наближення Борна. Розв'язок зворотної задачі зведено до розв'язання інтегрального рівняння Фредгольма першого роду. Наведено результати чисельних експериментів. The paper deals with a plane problem on forced oscillations of ideal fluid. The ideal fluid is bounded at the top by the elastic layer with uneven undersurface. The solution of the inverse problem on reconstructing the undersurface shape by the character of the upper surface oscillations is developed. The three approaches are used to solve the direct problem: method of small parameter, method of boundary elements, and Born's approximation. Solving of the inverse problem is reduced to solving the Fredholm integral equation of the first kind with a smooth kernel. The results of the numerical experiment are presented. ru Інститут гідромеханіки НАН України Обратная геометрическая задача для упруго-жидкой слоистой среды An inverse geometric problem for elastic-fluid layered medium Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Обратная геометрическая задача для упруго-жидкой слоистой среды |
| spellingShingle |
Обратная геометрическая задача для упруго-жидкой слоистой среды Ватульян, А.О. Углич, П.С. |
| title_short |
Обратная геометрическая задача для упруго-жидкой слоистой среды |
| title_full |
Обратная геометрическая задача для упруго-жидкой слоистой среды |
| title_fullStr |
Обратная геометрическая задача для упруго-жидкой слоистой среды |
| title_full_unstemmed |
Обратная геометрическая задача для упруго-жидкой слоистой среды |
| title_sort |
обратная геометрическая задача для упруго-жидкой слоистой среды |
| author |
Ватульян, А.О. Углич, П.С. |
| author_facet |
Ватульян, А.О. Углич, П.С. |
| publishDate |
2005 |
| language |
Russian |
| publisher |
Інститут гідромеханіки НАН України |
| format |
Article |
| title_alt |
An inverse geometric problem for elastic-fluid layered medium |
| description |
Рассмотрена плоская задача о вынужденных колебаниях идеальной жидкости, ограниченной сверху упругим слоем с неровной нижней поверхностью. Построено решение обратной задачи об определении формы нижней поверхности по характеру колебаний верхней. Для решения прямой задачи предлагаются три подхода - метод малого параметра, метод граничного элемента, а также приближение Борна. Решение обратной задачи сведено к решению интегрального уравнения Фредгольма первого рода. Приведены результаты численного эксперимента.
Розглянуто плоску задачу про вимушені коливання стисливої ідеальної рідини, обмеженої зверху пружним шаром з нерівною нижньою поверхнею. Побудовано розв'язок зворотної задачі про визначення форми нижньої поверхні за характером коливань верхньої. Для розв'язання прямої задачі запропоновані три підходи - метод малого параметру, метод граничного елемента, а також наближення Борна. Розв'язок зворотної задачі зведено до розв'язання інтегрального рівняння Фредгольма першого роду. Наведено результати чисельних експериментів.
The paper deals with a plane problem on forced oscillations of ideal fluid. The ideal fluid is bounded at the top by the elastic layer with uneven undersurface. The solution of the inverse problem on reconstructing the undersurface shape by the character of the upper surface oscillations is developed. The three approaches are used to solve the direct problem: method of small parameter, method of boundary elements, and Born's approximation. Solving of the inverse problem is reduced to solving the Fredholm integral equation of the first kind with a smooth kernel. The results of the numerical experiment are presented.
|
| issn |
1028-7507 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/1026 |
| citation_txt |
Обратная геометрическая задача для упруго-жидкой слоистой среды / А. О. Ватульян, П. С. Углич // Акуст. вісн. — 2005. — Т. 8, N 4. — С. 20-28. — Бібліогр.: 37 назв. — рос. |
| work_keys_str_mv |
AT vatulʹânao obratnaâgeometričeskaâzadačadlâuprugožidkoisloistoisredy AT ugličps obratnaâgeometričeskaâzadačadlâuprugožidkoisloistoisredy AT vatulʹânao aninversegeometricproblemforelasticfluidlayeredmedium AT ugličps aninversegeometricproblemforelasticfluidlayeredmedium |
| first_indexed |
2025-12-07T16:30:26Z |
| last_indexed |
2025-12-07T16:30:26Z |
| _version_ |
1850867739323793408 |