Новые книги
Saved in:
| Published in: | Технология и конструирование в электронной аппаратуре |
|---|---|
| Date: | 2016 |
| Format: | Article |
| Language: | Russian |
| Published: |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
2016
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/103856 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Новые книги // Технология и конструирование в электронной аппаратуре. — 2016. — № 1. — С. 11, 19, 32. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-103856 |
|---|---|
| record_format |
dspace |
| spelling |
2016-06-25T17:29:03Z 2016-06-25T17:29:03Z 2016 Новые книги // Технология и конструирование в электронной аппаратуре. — 2016. — № 1. — С. 11, 19, 32. — рос. 2225-5818 https://nasplib.isofts.kiev.ua/handle/123456789/103856 ru Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України Технология и конструирование в электронной аппаратуре Новые книги Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Новые книги |
| spellingShingle |
Новые книги |
| title_short |
Новые книги |
| title_full |
Новые книги |
| title_fullStr |
Новые книги |
| title_full_unstemmed |
Новые книги |
| title_sort |
новые книги |
| publishDate |
2016 |
| language |
Russian |
| container_title |
Технология и конструирование в электронной аппаратуре |
| publisher |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
| format |
Article |
| issn |
2225-5818 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/103856 |
| citation_txt |
Новые книги // Технология и конструирование в электронной аппаратуре. — 2016. — № 1. — С. 11, 19, 32. — рос. |
| first_indexed |
2025-11-26T00:10:40Z |
| last_indexed |
2025-11-26T00:10:40Z |
| _version_ |
1850595232370917376 |
| fulltext |
Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2016, ¹ 1
11
ÑèÑòåìû ïåðåäàЧè è îáðàáîòêè Ñèãíàëîâ
ISSN 2225-5818
REFERENCES
1. Ustroistva SVCh i antenny. Proektirovanie fazirovan-
nykh antennykh reshetok [Microwave devices and an-
tennas. The design of phased antenna arrays]. Ed. by
D.I.Voskresenskii. Moskow, Radio i svyaz’, 2012, 746 p. (Rus)
2. Tsifrovaya obrabotka signalov i izobrazhenii v radio-
fizicheskikh prilozheniyakh [Digital signal and image process-
ing applications in radiophysical]. Ed. by V.F.Kravchenko.
Moskow, Fizmatlit, 2011, 544 p. (Rus)
3. Zelkin E.G., Kravchenko V. F., Gusevskii V. I.
Konstruktivnye metody approksimatsii v teorii antenn
[Constructive methods of approximation in the theory of
antennas]. Moskow, Saiens-Press, 2005, 512 p. (Rus)
4. Sadchenko A. V., Kushnirenko O. A., Troyansky A. V.
[Algorithm for the synthesis of linear antenna arrays with
desired radiation pattern and integral amplitude coefficients].
Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2015,
no 2-3, pp. 15-18. http://dx.doi.org/10.15222/TKEA2015.2-
3.15 (Rus)
Directivity pattern (DP) or graphical representation of the dependence of gain factor (directivity gain)
of antennas on the direction of the antenna in the target plane is the main characteristic that describes its
directional properties.
Running DP measurements directly in the microwave range is very expensive. While generating and receiving
devices for the acoustic frequency range are reasonably priced.
In this paper, we propose a method for measuring the amplitude directivity pattern of parabolic mirrored
antennas on the basis of sound equivalent, which is based on the identity of the numerical values of the
directivity gain of microwave range, and at audio frequencies.
The paper presents analytical expressions for the calculation of equivalent frequency and defines the
requirements for the minimum size of the antenna.
The paper contains a modified block diagram for an amplitude directivity pattern meter for parabolic mirrored
antennas in the audio frequency range.
Keywords: directivity pattern, directional factor, aperture, direct focal reflector antenna, polygon measurements
method, equivalent audio frequency.
A. V. SADChEnKo, o. A. KUShnIREnKo,
M. T. Al`KhAMIDI, A. M. AlKhADI
Ukraine, Odessa national polytechnic university
E-mail: anjand@mail.ru, kuuk@ mail.ru
METhOD OF MEASURING ThE AMPlITUDE DIRECTIVITy PATTERN
OF PARAbOlIC MIRRORED ANTENNAS IN ThE AUDIO FREqUENCy RANGE
DOI: 10.15222/TKEA2016.1.08
UDC 621.396.677.494
ÍÎÂÛÅ ÊÍÈÃÈ
Í
Î
Â
Û
Å
Ê
Í
È
Ã
È
áурачок ð. à., êлимаш ì. ì., êоваль á. â. òелекомунікаційні систе-
ми передавання інформації. ìетоди кодування.— ëьвів: âидавництво
ëьвівської політехніки, 2015.
Рîзãëÿíóòî ïèòàííÿ îðãàíізàції ñèñòåм ïåðåдàâàííÿ
дàíèõ òà мåòîдіâ êîдóâàííÿ òà дåêîдóâàííÿ дâіéêîâîї
іíфîðмàції. Оïèñàíî ïðèíцèïè ïîбóдîâè òèïîâèõ
дâіéêîâèõ êîдіâ òà íàâåдåíî їõ õàðàêòåðèñòèêè. Äëÿ
íàéчàñòішå âèêîðèñòîâóâàíèõ íà ïðàêòèці êîдіâ íà-
âåдåíî ñòðóêòóðíі ñõåмè êîдåðіâ і дåêîдåðіâ òà àëãî-
ðèòмè їõíьîї ðîбîòè.
Äëÿ ñòóдåíòіâ íàïðÿміâ “Òåëåêîмóíіêàції”, “Іíфîð-
мàціéíі мåðåжі зâ’ÿзêó” òà іí., à òàêîж дëÿ іíжåíåðíî-
òåõíічíèõ ïðàціâíèêіâ, ÿêі зàéмàюòьñÿ ðîзðîбëåí-
íÿм і ñòâîðåííÿм ñèñòåм ïåðåдàâàííÿ іíфîðмàції.
Äëÿ ñàмîïåðåâіðêè ðіâíÿ зàñâîєííÿ мàòåðіàëó ó êіíці
êîжíîї ãëàâè íàâåдåíî âідïîâідíі ïèòàííÿ òà зàдàчі.
Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2016, ¹ 1
19
ÑåíÑîýëåêòðîíèêà
ISSN 2225-5818
REFERENCES
1. Kondrik A. I. [Charges collection efficiency in gam-
ma-ray detectors with different electrodes configuration].
Tekhnologiya i Konstruirovanie v Elektronnoi Apparature,
2012, no 4, pp. 47-51. (Rus)
2. Kondrik A. I. Effect of irradiation on properties of
CdTe detectors. East European Journal of Physics, 2014,
vol. 1, no 1, pp. 47-52.
3. Kondrik A. I. Influence of radiation-induced defects on
CdTe and CdZnTe detectors properties. Problems of Atomic
Science and Technology, Series: Physics of radiation Effect
and radiation Materials Science, 2015, vol. 96, no 2, pp. 18-24.
4. Castaldini A., Cavalini A., Fraboni B. Deep levels
in CdTe and CdZnTe. J. Appl. Phys., 1998, vol. 83, no 4,
pp. 2121-2126.
5. Fraboni B., Pasquini L., Castaldini A., Cavallini A.,
Siffert P. X-ray irradiation effects on the trapping proper-
ties of Cd1–xZnxTe detectors. J. Appl. Phys., 2009, vol. 106,
pp. 093713. http://dx.doi.org/10.1063/1.3253748
6. Hofmann D.M, Stadler W., Christmann P., Meyer
B.K. Defects in CdTe and Cd1–xZnxTe. Nuclear Instruments
and Methods in Physics research. Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 1996,
vol. 380, no 1-2, pp. 117-120.
7. Pavlović M., Desnica U. V., Gladić J. Complete set of
deep traps in semi-insulating GaAs. J. Appl. Phys., 2000, vol. 88,
no 8, pp. 4563. http://dx.doi.org/10.1063/1.1308072
8. Pavlović M., Jakšić M., Zorc H., Medunić Z.
Identification of deep trap levels from thermally stimulated
current spectra of semi-insulating CdZnTe detector material.
J. Appl. Phys., 2008, vol. 104, no 2, pp. 023525. http://
dx.doi.org/10.1063/1.2959354
9. Ruihua Nan, Wanqi Jie, Gangqiang Zha, Bei
Wang, Yadong Xu, Hui Yu. Irradiation-induced defects
in Cd0.9Zn0.1Te:Al. Journal of Electronic Materials, 2012,
vol. 41, no 11, pp. 2044-2049. http://dx.doi.org/10.1007/
s11664-012-2204-5
10. Akutagawa W., Zanio K. Gamma response of semi-
insulating material in the presence of trapping and detrapping.
J. Appl. Phys., 1969, vol. 40, no. 9, pp. 3838-3854. http://
dx.doi.org/10.1063/1.1658281
11. Sadullaev A.B. [Status of impurity atoms with deep
levels in semiconductors in a strong compensation]. Molodoy
uchonyj, 2011, vol. 1, no. 12, pp. 48-50. (Rus)
12. Cavallini A., Fraboni B., Dusi W., Zanarini M., Siffert P.
Deep levels and compensation in γ-irradiated CdZnTe. Appl.
Phys. Lett., 2000, vol. 77, no 20, pp. 3212-3214. http://
dx.doi.org/10.1063/1.1324980
during operation. The degradation of properties of irradiated detector may occur due to the offset dependence
of the resistivity on the aluminum dopant concentration N(Al) towards to higher concentrations of Al when
the value of doping is not enough large. only resistivity will be reduced and charge collection efficiency may
increase. The increase in resistivity of Cd0.9Zn0.1Te and charges collection efficiency of the detector occur
when there is a sufficiently high level of doping the material with aluminum.
Keywords: CdZnTe, gamma-irradiation, detectors, computer simulation, deep levels.
ÍÎÂÛÅ ÊÍÈÃÈ
Í
Î
Â
Û
Å
Ê
Í
È
Ã
È
Дружинін à. î., Мар’ямова І. Й., êутраков î. П. Датчики механічних
величин на основі ниткоподібних кристалів кремнію, германію та сполук
à3В5.— ëьвів: Видавництво ëьвівської політехніки, 2015.
Пðîàíàëізîâàíî фізèчíі îñíîâè ñòâîðåííÿ íàïіâïðîâідíèêîâèõ
òåíзîðåзèñòèâíèõ дàòчèêіâ мåõàíічíèõ âåëèчèí. Нàâåдåíî
õàðàêòåðèñòèêè òåíзîðåзèñòîðіâ íà îñíîâі íèòêîïîдібíèõ
êðèñòàëіâ êðåмíію, ãåðмàíію òà ñïîëóê А3В5 òà ðåзóëьòàòè
дîñëіджåíь âïëèâó åëåêòðîííîãî îïðîміíåííÿ íà âëàñòèâîñòі
íèòêîïîдібíèõ êðèñòàëіâ êðåмíію. Рîзãëÿíóòî òåõíîëîãічíі
îñíîâè âèãîòîâëåííÿ дàòчèêіâ мåõàíічíèõ âåëèчèí íà îñíîâі
íèòêîïîдібíèõ êðèñòàëіâ êðåмíію дëÿ ðізíèõ òåмïåðàòóð-
íèõ діàïàзîíіâ, à òàêîж їõ êîíñòðóêòèâíі îñîбëèâîñòі. Оïè-
ñàíî дàòчèêè òèñêó ðізíîãî ïðèзíàчåííÿ òà їõíі õàðàêòåðè-
ñòèêè, à òàêîж дàòчèêè зóñèëëÿ і ïðèñêîðåííÿ. Рîзãëÿíó-
òî мîжëèâîñòі ñòâîðåííÿ бàãàòîфóíêціéíèõ дàòчèêіâ дëÿ
âèміðюâàííÿ мåõàíічíèõ і òåïëîâèõ âåëèчèí.
Äëÿ íàóêîâèõ, іíжåíåðíî-òåõíічíèõ ïðàціâíèêіâ і ñòóдåíòіâ, ÿêі íàâчàюòьñÿ зà
íàïðÿмîм “Міêðî- òà íàíîåëåêòðîíіêà”, à òàêîж шèðîêîãî зàãàëó ñïåціàëіñòіâ ó
ãàëóзі ñåíñîðíîї åëåêòðîíіêè òà міêðîåëåêòðîíіêè.
Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2016, ¹ 1
32
ÒåõíîëîãèЧåñêèå ïðîöåññû è îáîðóäîâàíèå
ISSN 2225-5818
REFERENCES
1. Stolyarenko Yu.A. [The crystals ñontrol of integrated
schemes on the basis of statistical modeling by pointed distri-
butions method]. Dissertation abstract. Moskow, SUE NPTs
“SPURT”, 2006. (Rus)
2. Goodwin L.D., Leech N.L. Understanding Correlation:
Factors That Affect the Size of r. The Journal of Experimental
Education, 2006, vol. 74, iss. 3, pp. 249-266. http://dx.doi.
org/10.3200/JEXE.74.3.249-266
3. J.C.F. de Winter. Using the Student’s t-test with ex-
tremely small sample sizes. Practical Assessment, Research &
Evaluation, 2013, vol. 18, no. 10. http://pareonline.net/
getvn.asp?v=18&n=10
4. Moinester M., Gottfried R. Sample size estimation
for correlation with pre-specified confidence interval. The
Quantitative Methods for Psychology, 2014, vol. 10, no. 2,
pp. 124-130.
5. Sukhoruchenkov B.I. Analiz maloi vyborki [Small
sample analysis. Applied statistical methods]. Moskow,
Vuzovskaya kniga, 2010, 384 p. (Rus)
6. Dolgov A.Yu. [The efficiency of statistical control and
management methods of technological chips production pro-
cesses]. Dissertation abstract. Tiraspol, Pridnestrovien state
university of T. G. Shevchenko, 2000. (Rus)
7. Stolyarenko Y.A. [Method of point allocations].
Electronic and computer systems, 2012, no.6, pp. 75-77. (Rus)
8. Bol’shev L.N., Smirnov N.V. Tablitsy matematicheskoi
statistiki [Mathematical Statistics Tables]. Moscow, Nauka,
1983, 416 p. (Rus)
obtain a data set sufficiently large for traditional analysis methods. In this research the author investigates
and visually illustrates the possibility of Pearson correlation coefficient usage (and the impact on the value
of the virtual procedures increasing the volume sample), as well as the possibility of the Fechner’s modified
index usage after applying the method of pointed distributions and tabulation of the virtual two-dimensional
distribution. The study allows concluding that the considered methods do not provide the required accuracy
on small volume samples, and the usage of “bootstrapping” and the method of point distributions during the
correlation analysis are not recommended here.
Keywords: small volume samples, correlation analysis, method of point allocations, Pearson correlation
coefficient, Fechner’s modified index.
ÍÎÂÛÅ ÊÍÈÃÈ
Í
Î
Â
Û
Å
Ê
Í
È
Ã
È
Матвійків М. ä., âус á. ñ., Матвійків î. М. åлементи та компоненти елек-
тронних пристроїв.— ëьвів: âидавництво ëьвівської політехніки, 2015.
Вèêëàдåíî îñíîâíі âідîмîñòі ïðî ñóчàñíі òà ïåðñïåêòèâíі åëå-
мåíòè і êîмïîíåíòè åëåêòðîííèõ ïðèñòðîїâ, зîêðåмà íàâåдåíî
âèзíàчåííÿ ðізíèõ âèдіâ åëåмåíòіâ òà êîмïîíåíòіâ, ðîзãëÿíó-
òî їõ ïðèзíàчåííÿ, êëàñèфіêàцію, óмîâíі зîбðàжåííÿ і ïîзíà-
чåííÿ, бóдîâó, ðîбîòó, âëàñòèâîñòі, зàñòîñóâàííÿ.
Äëÿ ñòóдåíòіâ âèщèõ íàâчàëьíèõ зàêëàдіâ, ÿêі íàâчàюòь-
ñÿ зà íàïðÿмîм “Рàдіîåëåêòðîííі àïàðàòè”, òà фàõіâціâ, ÿêі
ïðîåêòóюòь, âèãîòîâëÿюòь àбî îбñëóãîâóюòь ðізíîмàíіòíі
åëåêòðîííі àïàðàòè, зîêðåмà àóдіî- òà âідåîòåõíіêó, åëåêòðîííі
îбчèñëюâàëьíі мàшèíè, міêðîïðîцåñîðè òà ïåðñîíàëьíі
êîмï’юòåðè, мåдèчíі àïàðàòè, зàñîбè зâ’ÿзêó, êîíòðîëьíî-
âèміðюâàëьíі ïðèëàдè, ðîбîòîòåõíіêó, àâòîмàòèзîâàíі ñèñòå-
мè ïðîåêòóâàííÿ òà óïðàâëіííÿ òîщî.
Í
Î
Â
Û
Å
Ê
Í
È
Ã
È
áаришніков ã. â., âолинюк ä. Ю., ãельжинський І. І., ãотра З. Ю.,
Мінаєв á. ï., ñтахіра ï. Й., Черпак â. â. îрганічна електроніка.—
ëьвів: âидавництво ëьвівської політехніки, 2015.
Нàâåдåíî îñíîâíі ïîñòóëàòè êâàíòîâîї мåõàíіêè дëÿ îðãàíічíîї
åëåêòðîíіêè. Оïèñàíî бàзîâі ñòðóêòóðè òà îñîбëèâîñòі
фóíêціîíóâàííÿ íàíîðîзміðíèõ åëåмåíòіâ, ïðèñòðîїâ åëåêòðîííîї
òåõíіêè: ñîíÿчíèõ фîòîåëåмåíòіâ, ñâіòëîâèïðîміíюâàëьíèõ
ñòðóêòóð, òðàíзèñòîðíèõ ñòðóêòóð, ñåíñîðіâ òîщî. Рîзãëÿíóòî
фізèêî-õімічíі îñíîâè òåõíîëîãії ñòâîðåííÿ åëåêòðîííèõ ñòðóê-
òóð îðãàíічíîї åëåêòðîíіêè.
Äëÿ ñòóдåíòіâ òà àñïіðàíòіâ, ÿêі íàâчàюòьñÿ зà íàïðÿмîм
åëåêòðîíіêè.
|