Новые книги

Saved in:
Bibliographic Details
Published in:Технология и конструирование в электронной аппаратуре
Date:2016
Format: Article
Language:Russian
Published: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2016
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/103856
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Новые книги // Технология и конструирование в электронной аппаратуре. — 2016. — № 1. — С. 11, 19, 32. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-103856
record_format dspace
spelling 2016-06-25T17:29:03Z
2016-06-25T17:29:03Z
2016
Новые книги // Технология и конструирование в электронной аппаратуре. — 2016. — № 1. — С. 11, 19, 32. — рос.
2225-5818
https://nasplib.isofts.kiev.ua/handle/123456789/103856
ru
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
Технология и конструирование в электронной аппаратуре
Новые книги
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Новые книги
spellingShingle Новые книги
title_short Новые книги
title_full Новые книги
title_fullStr Новые книги
title_full_unstemmed Новые книги
title_sort новые книги
publishDate 2016
language Russian
container_title Технология и конструирование в электронной аппаратуре
publisher Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
format Article
issn 2225-5818
url https://nasplib.isofts.kiev.ua/handle/123456789/103856
citation_txt Новые книги // Технология и конструирование в электронной аппаратуре. — 2016. — № 1. — С. 11, 19, 32. — рос.
first_indexed 2025-11-26T00:10:40Z
last_indexed 2025-11-26T00:10:40Z
_version_ 1850595232370917376
fulltext Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2016, ¹ 1 11 ÑèÑòåìû ïåðåäàЧè è îáðàáîòêè Ñèãíàëîâ ISSN 2225-5818 REFERENCES 1. Ustroistva SVCh i antenny. Proektirovanie fazirovan- nykh antennykh reshetok [Microwave devices and an- tennas. The design of phased antenna arrays]. Ed. by D.I.Voskresenskii. Moskow, Radio i svyaz’, 2012, 746 p. (Rus) 2. Tsifrovaya obrabotka signalov i izobrazhenii v radio- fizicheskikh prilozheniyakh [Digital signal and image process- ing applications in radiophysical]. Ed. by V.F.Kravchenko. Moskow, Fizmatlit, 2011, 544 p. (Rus) 3. Zelkin E.G., Kravchenko V. F., Gusevskii V. I. Konstruktivnye metody approksimatsii v teorii antenn [Constructive methods of approximation in the theory of antennas]. Moskow, Saiens-Press, 2005, 512 p. (Rus) 4. Sadchenko A. V., Kushnirenko O. A., Troyansky A. V. [Algorithm for the synthesis of linear antenna arrays with desired radiation pattern and integral amplitude coefficients]. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2015, no 2-3, pp. 15-18. http://dx.doi.org/10.15222/TKEA2015.2- 3.15 (Rus) Directivity pattern (DP) or graphical representation of the dependence of gain factor (directivity gain) of antennas on the direction of the antenna in the target plane is the main characteristic that describes its directional properties. Running DP measurements directly in the microwave range is very expensive. While generating and receiving devices for the acoustic frequency range are reasonably priced. In this paper, we propose a method for measuring the amplitude directivity pattern of parabolic mirrored antennas on the basis of sound equivalent, which is based on the identity of the numerical values of the directivity gain of microwave range, and at audio frequencies. The paper presents analytical expressions for the calculation of equivalent frequency and defines the requirements for the minimum size of the antenna. The paper contains a modified block diagram for an amplitude directivity pattern meter for parabolic mirrored antennas in the audio frequency range. Keywords: directivity pattern, directional factor, aperture, direct focal reflector antenna, polygon measurements method, equivalent audio frequency. A. V. SADChEnKo, o. A. KUShnIREnKo, M. T. Al`KhAMIDI, A. M. AlKhADI Ukraine, Odessa national polytechnic university E-mail: anjand@mail.ru, kuuk@ mail.ru METhOD OF MEASURING ThE AMPlITUDE DIRECTIVITy PATTERN OF PARAbOlIC MIRRORED ANTENNAS IN ThE AUDIO FREqUENCy RANGE DOI: 10.15222/TKEA2016.1.08 UDC 621.396.677.494 ÍÎÂÛÅ ÊÍÈÃÈ Í Î Â Û Å Ê Í È Ã È áурачок ð. à., êлимаш ì. ì., êоваль á. â. òелекомунікаційні систе- ми передавання інформації. ìетоди кодування.— ëьвів: âидавництво ëьвівської політехніки, 2015. Рîзãëÿíóòî ïèòàííÿ îðãàíізàції ñèñòåм ïåðåдàâàííÿ дàíèõ òà мåòîдіâ êîдóâàííÿ òà дåêîдóâàííÿ дâіéêîâîї іíфîðмàції. Оïèñàíî ïðèíцèïè ïîбóдîâè òèïîâèõ дâіéêîâèõ êîдіâ òà íàâåдåíî їõ õàðàêòåðèñòèêè. Äëÿ íàéчàñòішå âèêîðèñòîâóâàíèõ íà ïðàêòèці êîдіâ íà- âåдåíî ñòðóêòóðíі ñõåмè êîдåðіâ і дåêîдåðіâ òà àëãî- ðèòмè їõíьîї ðîбîòè. Äëÿ ñòóдåíòіâ íàïðÿміâ “Òåëåêîмóíіêàції”, “Іíфîð- мàціéíі мåðåжі зâ’ÿзêó” òà іí., à òàêîж дëÿ іíжåíåðíî- òåõíічíèõ ïðàціâíèêіâ, ÿêі зàéмàюòьñÿ ðîзðîбëåí- íÿм і ñòâîðåííÿм ñèñòåм ïåðåдàâàííÿ іíфîðмàції. Äëÿ ñàмîïåðåâіðêè ðіâíÿ зàñâîєííÿ мàòåðіàëó ó êіíці êîжíîї ãëàâè íàâåдåíî âідïîâідíі ïèòàííÿ òà зàдàчі. Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2016, ¹ 1 19 ÑåíÑîýëåêòðîíèêà ISSN 2225-5818 REFERENCES 1. Kondrik A. I. [Charges collection efficiency in gam- ma-ray detectors with different electrodes configuration]. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, 2012, no 4, pp. 47-51. (Rus) 2. Kondrik A. I. Effect of irradiation on properties of CdTe detectors. East European Journal of Physics, 2014, vol. 1, no 1, pp. 47-52. 3. Kondrik A. I. Influence of radiation-induced defects on CdTe and CdZnTe detectors properties. Problems of Atomic Science and Technology, Series: Physics of radiation Effect and radiation Materials Science, 2015, vol. 96, no 2, pp. 18-24. 4. Castaldini A., Cavalini A., Fraboni B. Deep levels in CdTe and CdZnTe. J. Appl. Phys., 1998, vol. 83, no 4, pp. 2121-2126. 5. Fraboni B., Pasquini L., Castaldini A., Cavallini A., Siffert P. X-ray irradiation effects on the trapping proper- ties of Cd1–xZnxTe detectors. J. Appl. Phys., 2009, vol. 106, pp. 093713. http://dx.doi.org/10.1063/1.3253748 6. Hofmann D.M, Stadler W., Christmann P., Meyer B.K. Defects in CdTe and Cd1–xZnxTe. Nuclear Instruments and Methods in Physics research. Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, vol. 380, no 1-2, pp. 117-120. 7. Pavlović M., Desnica U. V., Gladić J. Complete set of deep traps in semi-insulating GaAs. J. Appl. Phys., 2000, vol. 88, no 8, pp. 4563. http://dx.doi.org/10.1063/1.1308072 8. Pavlović M., Jakšić M., Zorc H., Medunić Z. Identification of deep trap levels from thermally stimulated current spectra of semi-insulating CdZnTe detector material. J. Appl. Phys., 2008, vol. 104, no 2, pp. 023525. http:// dx.doi.org/10.1063/1.2959354 9. Ruihua Nan, Wanqi Jie, Gangqiang Zha, Bei Wang, Yadong Xu, Hui Yu. Irradiation-induced defects in Cd0.9Zn0.1Te:Al. Journal of Electronic Materials, 2012, vol. 41, no 11, pp. 2044-2049. http://dx.doi.org/10.1007/ s11664-012-2204-5 10. Akutagawa W., Zanio K. Gamma response of semi- insulating material in the presence of trapping and detrapping. J. Appl. Phys., 1969, vol. 40, no. 9, pp. 3838-3854. http:// dx.doi.org/10.1063/1.1658281 11. Sadullaev A.B. [Status of impurity atoms with deep levels in semiconductors in a strong compensation]. Molodoy uchonyj, 2011, vol. 1, no. 12, pp. 48-50. (Rus) 12. Cavallini A., Fraboni B., Dusi W., Zanarini M., Siffert P. Deep levels and compensation in γ-irradiated CdZnTe. Appl. Phys. Lett., 2000, vol. 77, no 20, pp. 3212-3214. http:// dx.doi.org/10.1063/1.1324980 during operation. The degradation of properties of irradiated detector may occur due to the offset dependence of the resistivity on the aluminum dopant concentration N(Al) towards to higher concentrations of Al when the value of doping is not enough large. only resistivity will be reduced and charge collection efficiency may increase. The increase in resistivity of Cd0.9Zn0.1Te and charges collection efficiency of the detector occur when there is a sufficiently high level of doping the material with aluminum. Keywords: CdZnTe, gamma-irradiation, detectors, computer simulation, deep levels. ÍÎÂÛÅ ÊÍÈÃÈ Í Î Â Û Å Ê Í È Ã È Дружинін à. î., Мар’ямова І. Й., êутраков î. П. Датчики механічних величин на основі ниткоподібних кристалів кремнію, германію та сполук à3В5.— ëьвів: Видавництво ëьвівської політехніки, 2015. Пðîàíàëізîâàíî фізèчíі îñíîâè ñòâîðåííÿ íàïіâïðîâідíèêîâèõ òåíзîðåзèñòèâíèõ дàòчèêіâ мåõàíічíèõ âåëèчèí. Нàâåдåíî õàðàêòåðèñòèêè òåíзîðåзèñòîðіâ íà îñíîâі íèòêîïîдібíèõ êðèñòàëіâ êðåмíію, ãåðмàíію òà ñïîëóê А3В5 òà ðåзóëьòàòè дîñëіджåíь âïëèâó åëåêòðîííîãî îïðîміíåííÿ íà âëàñòèâîñòі íèòêîïîдібíèõ êðèñòàëіâ êðåмíію. Рîзãëÿíóòî òåõíîëîãічíі îñíîâè âèãîòîâëåííÿ дàòчèêіâ мåõàíічíèõ âåëèчèí íà îñíîâі íèòêîïîдібíèõ êðèñòàëіâ êðåмíію дëÿ ðізíèõ òåмïåðàòóð- íèõ діàïàзîíіâ, à òàêîж їõ êîíñòðóêòèâíі îñîбëèâîñòі. Оïè- ñàíî дàòчèêè òèñêó ðізíîãî ïðèзíàчåííÿ òà їõíі õàðàêòåðè- ñòèêè, à òàêîж дàòчèêè зóñèëëÿ і ïðèñêîðåííÿ. Рîзãëÿíó- òî мîжëèâîñòі ñòâîðåííÿ бàãàòîфóíêціéíèõ дàòчèêіâ дëÿ âèміðюâàííÿ мåõàíічíèõ і òåïëîâèõ âåëèчèí. Äëÿ íàóêîâèõ, іíжåíåðíî-òåõíічíèõ ïðàціâíèêіâ і ñòóдåíòіâ, ÿêі íàâчàюòьñÿ зà íàïðÿмîм “Міêðî- òà íàíîåëåêòðîíіêà”, à òàêîж шèðîêîãî зàãàëó ñïåціàëіñòіâ ó ãàëóзі ñåíñîðíîї åëåêòðîíіêè òà міêðîåëåêòðîíіêè. Òåõíîëîãèÿ è êîíñòðóèðîâàíèå â ýëåêòðîííîé àïïàðàòóðå, 2016, ¹ 1 32 ÒåõíîëîãèЧåñêèå ïðîöåññû è îáîðóäîâàíèå ISSN 2225-5818 REFERENCES 1. Stolyarenko Yu.A. [The crystals ñontrol of integrated schemes on the basis of statistical modeling by pointed distri- butions method]. Dissertation abstract. Moskow, SUE NPTs “SPURT”, 2006. (Rus) 2. Goodwin L.D., Leech N.L. Understanding Correlation: Factors That Affect the Size of r. The Journal of Experimental Education, 2006, vol. 74, iss. 3, pp. 249-266. http://dx.doi. org/10.3200/JEXE.74.3.249-266 3. J.C.F. de Winter. Using the Student’s t-test with ex- tremely small sample sizes. Practical Assessment, Research & Evaluation, 2013, vol. 18, no. 10. http://pareonline.net/ getvn.asp?v=18&n=10 4. Moinester M., Gottfried R. Sample size estimation for correlation with pre-specified confidence interval. The Quantitative Methods for Psychology, 2014, vol. 10, no. 2, pp. 124-130. 5. Sukhoruchenkov B.I. Analiz maloi vyborki [Small sample analysis. Applied statistical methods]. Moskow, Vuzovskaya kniga, 2010, 384 p. (Rus) 6. Dolgov A.Yu. [The efficiency of statistical control and management methods of technological chips production pro- cesses]. Dissertation abstract. Tiraspol, Pridnestrovien state university of T. G. Shevchenko, 2000. (Rus) 7. Stolyarenko Y.A. [Method of point allocations]. Electronic and computer systems, 2012, no.6, pp. 75-77. (Rus) 8. Bol’shev L.N., Smirnov N.V. Tablitsy matematicheskoi statistiki [Mathematical Statistics Tables]. Moscow, Nauka, 1983, 416 p. (Rus) obtain a data set sufficiently large for traditional analysis methods. In this research the author investigates and visually illustrates the possibility of Pearson correlation coefficient usage (and the impact on the value of the virtual procedures increasing the volume sample), as well as the possibility of the Fechner’s modified index usage after applying the method of pointed distributions and tabulation of the virtual two-dimensional distribution. The study allows concluding that the considered methods do not provide the required accuracy on small volume samples, and the usage of “bootstrapping” and the method of point distributions during the correlation analysis are not recommended here. Keywords: small volume samples, correlation analysis, method of point allocations, Pearson correlation coefficient, Fechner’s modified index. ÍÎÂÛÅ ÊÍÈÃÈ Í Î Â Û Å Ê Í È Ã È Матвійків М. ä., âус á. ñ., Матвійків î. М. åлементи та компоненти елек- тронних пристроїв.— ëьвів: âидавництво ëьвівської політехніки, 2015. Вèêëàдåíî îñíîâíі âідîмîñòі ïðî ñóчàñíі òà ïåðñïåêòèâíі åëå- мåíòè і êîмïîíåíòè åëåêòðîííèõ ïðèñòðîїâ, зîêðåмà íàâåдåíî âèзíàчåííÿ ðізíèõ âèдіâ åëåмåíòіâ òà êîмïîíåíòіâ, ðîзãëÿíó- òî їõ ïðèзíàчåííÿ, êëàñèфіêàцію, óмîâíі зîбðàжåííÿ і ïîзíà- чåííÿ, бóдîâó, ðîбîòó, âëàñòèâîñòі, зàñòîñóâàííÿ. Äëÿ ñòóдåíòіâ âèщèõ íàâчàëьíèõ зàêëàдіâ, ÿêі íàâчàюòь- ñÿ зà íàïðÿмîм “Рàдіîåëåêòðîííі àïàðàòè”, òà фàõіâціâ, ÿêі ïðîåêòóюòь, âèãîòîâëÿюòь àбî îбñëóãîâóюòь ðізíîмàíіòíі åëåêòðîííі àïàðàòè, зîêðåмà àóдіî- òà âідåîòåõíіêó, åëåêòðîííі îбчèñëюâàëьíі мàшèíè, міêðîïðîцåñîðè òà ïåðñîíàëьíі êîмï’юòåðè, мåдèчíі àïàðàòè, зàñîбè зâ’ÿзêó, êîíòðîëьíî- âèміðюâàëьíі ïðèëàдè, ðîбîòîòåõíіêó, àâòîмàòèзîâàíі ñèñòå- мè ïðîåêòóâàííÿ òà óïðàâëіííÿ òîщî. Í Î Â Û Å Ê Í È Ã È áаришніков ã. â., âолинюк ä. Ю., ãельжинський І. І., ãотра З. Ю., Мінаєв á. ï., ñтахіра ï. Й., Черпак â. â. îрганічна електроніка.— ëьвів: âидавництво ëьвівської політехніки, 2015. Нàâåдåíî îñíîâíі ïîñòóëàòè êâàíòîâîї мåõàíіêè дëÿ îðãàíічíîї åëåêòðîíіêè. Оïèñàíî бàзîâі ñòðóêòóðè òà îñîбëèâîñòі фóíêціîíóâàííÿ íàíîðîзміðíèõ åëåмåíòіâ, ïðèñòðîїâ åëåêòðîííîї òåõíіêè: ñîíÿчíèõ фîòîåëåмåíòіâ, ñâіòëîâèïðîміíюâàëьíèõ ñòðóêòóð, òðàíзèñòîðíèõ ñòðóêòóð, ñåíñîðіâ òîщî. Рîзãëÿíóòî фізèêî-õімічíі îñíîâè òåõíîëîãії ñòâîðåííÿ åëåêòðîííèõ ñòðóê- òóð îðãàíічíîї åëåêòðîíіêè. Äëÿ ñòóдåíòіâ òà àñïіðàíòіâ, ÿêі íàâчàюòьñÿ зà íàïðÿмîм åëåêòðîíіêè.