Atomic Structure in the Vicinity of Nanovoids and Features of These Defects

Many properties of metals are determined by the defects, such as point defects, their complexes and nanovoids, whereas properties of these defects are generally related to the changes in atomic structure in the vicinity of these defects. In this work, recently developed approach is applied to simula...

Full description

Saved in:
Bibliographic Details
Published in:Металлофизика и новейшие технологии
Date:2013
Main Authors: Germanov, A.B., Ershova, I.V., Kislitskaya, E.V., Nazarov, A.V., Zaluzhnyi, A.G.
Format: Article
Language:English
Published: Інститут металофізики ім. Г.В. Курдюмова НАН України 2013
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/104223
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Atomic Structure in the Vicinity of Nanovoids and Features of These Defects / A.B. Germanov, I.V. Ershova, E.V. Kislitskaya, A.V. Nazarov, A.G. Zaluzhnyi // Металлофизика и новейшие технологии. — 2013. — Т. 35, № 10. — С. 1319-1331. — Бібліогр.: 14 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-104223
record_format dspace
spelling Germanov, A.B.
Ershova, I.V.
Kislitskaya, E.V.
Nazarov, A.V.
Zaluzhnyi, A.G.
2016-07-04T19:42:00Z
2016-07-04T19:42:00Z
2013
Atomic Structure in the Vicinity of Nanovoids and Features of These Defects / A.B. Germanov, I.V. Ershova, E.V. Kislitskaya, A.V. Nazarov, A.G. Zaluzhnyi // Металлофизика и новейшие технологии. — 2013. — Т. 35, № 10. — С. 1319-1331. — Бібліогр.: 14 назв. — рос.
1024-1809
PACS numbers: 61.72.Bb, 61.72.jd, 65.40.De
https://nasplib.isofts.kiev.ua/handle/123456789/104223
Many properties of metals are determined by the defects, such as point defects, their complexes and nanovoids, whereas properties of these defects are generally related to the changes in atomic structure in the vicinity of these defects. In this work, recently developed approach is applied to simulate vacancy complexes and nanovoids. A developed model on the basis of Molecular Statics is used to investigate the atomic structure peculiarities in the vicinity of vacancy complexes and nanovoids, and the atomic displacements in the elastic medium surrounding the computational cell are determined in a self-consistent manner. The second part of the work is concerned with the study of atomic structure changes under temperature increasing within the new model based on Molecular Dynamics. Within the scope of this model, coordinates of the atoms in the area nearby of vacancy complex or nanovoid surface are averaged, during a simulation. Obtained mean positions of atoms are used for calculation of averaged interatomic distances; that allows determining lattice-parameter temperature dependence and then temperature-determined changes of atomic structure in the defects’ vicinity. Simulation is performed for various f.c.c. and b.c.c. metals. For these metals, thermal expansion data are obtained, and the change of atomic structure in the defects’ vicinity is determined from temperature increase.
Багато властивостей металів визначаються дефектами, їхніми комплексами і нанопорами, тоді як властивості цих дефектів, взагалі кажучи, пов’язані зі змінами атомної структури поблизу цих дефектів. У даній роботі нещодавно запропонований підхід застосовується для симуляції вакансійних комплексів та нанопор. Нещодавно запропонована модель на основі методи молекулярної статики використовується для дослідження особливостей атомної структури в околі вакансійних комплексів і нанопор, а також уможливлює самоузгодженим чином знайти атомні зміщення у пружньому середовищі, яке оточує розрахункову комірку. Другу частину роботи присвячено вивченню змін атомної структури зі зростанням температури, шляхом застосування нової моделі, яка ґрунтується вже на молекулярній динаміці. В рамках даної моделі координати атомів поблизу вакансійних комплексів або поверхні нанопор усереднюються в процесі симуляції. Одержані середні положення атомів використовуються для розрахунку усереднених міжатомних відстаней, що уможливлює спочатку одержати температурну залежність параметра ґратниці, а потім обумовлені температурою зміни атомної структури в околі дефектів. Моделювання проводилося для різних ГЦК- та ОЦК-металів. Для цих металів одержано дані для теплового розширення, а також визначено зміну атомної структури в околі дефектів при зростанні температури.
Многие свойства металлов определяются дефектами, их комплексами и нанопорами, тогда как свойства этих дефектов, вообще говоря, связаны с изменениями атомной структуры вблизи этих дефектов. В данной работе недавно предложенный подход применяется для симуляции вакансионных комплексов и нанопор. Недавно предложенная модель на основе метода молекулярной статики используется для исследования особенностей атомной структуры в окрестности вакансионных комплексов и нанопор, а также позволяет самосогласованным образом найти атомные смещения в упругой среде, окружающей расчётную ячейку. Вторая часть работы посвящена изучению изменений атомной структуры с ростом температуры путём применения новой модели, основанной уже на молекулярной динамике. В рамках данной модели координаты атомов вблизи вакансионных комплексов или поверхности нанопор усредняются в процессе симуляции. Полученные средние положения атомов используются для расчёта усреднённых межатомных расстояний, что позволяет сначала получить температурную зависимость параметра решётки, а затем обусловленные температурой изменения атомной структуры в окрестности дефектов. Моделирование проводилось для различных ГЦК- и ОЦК-металлов. Для этих металлов получены данные для теплового расширения, а также определено измене
en
Інститут металофізики ім. Г.В. Курдюмова НАН України
Металлофизика и новейшие технологии
Дефекты кристаллической решётки
Atomic Structure in the Vicinity of Nanovoids and Features of These Defects
Атомная структура вблизи нанопор и особенности этих дефектов
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Atomic Structure in the Vicinity of Nanovoids and Features of These Defects
spellingShingle Atomic Structure in the Vicinity of Nanovoids and Features of These Defects
Germanov, A.B.
Ershova, I.V.
Kislitskaya, E.V.
Nazarov, A.V.
Zaluzhnyi, A.G.
Дефекты кристаллической решётки
title_short Atomic Structure in the Vicinity of Nanovoids and Features of These Defects
title_full Atomic Structure in the Vicinity of Nanovoids and Features of These Defects
title_fullStr Atomic Structure in the Vicinity of Nanovoids and Features of These Defects
title_full_unstemmed Atomic Structure in the Vicinity of Nanovoids and Features of These Defects
title_sort atomic structure in the vicinity of nanovoids and features of these defects
author Germanov, A.B.
Ershova, I.V.
Kislitskaya, E.V.
Nazarov, A.V.
Zaluzhnyi, A.G.
author_facet Germanov, A.B.
Ershova, I.V.
Kislitskaya, E.V.
Nazarov, A.V.
Zaluzhnyi, A.G.
topic Дефекты кристаллической решётки
topic_facet Дефекты кристаллической решётки
publishDate 2013
language English
container_title Металлофизика и новейшие технологии
publisher Інститут металофізики ім. Г.В. Курдюмова НАН України
format Article
title_alt Атомная структура вблизи нанопор и особенности этих дефектов
description Many properties of metals are determined by the defects, such as point defects, their complexes and nanovoids, whereas properties of these defects are generally related to the changes in atomic structure in the vicinity of these defects. In this work, recently developed approach is applied to simulate vacancy complexes and nanovoids. A developed model on the basis of Molecular Statics is used to investigate the atomic structure peculiarities in the vicinity of vacancy complexes and nanovoids, and the atomic displacements in the elastic medium surrounding the computational cell are determined in a self-consistent manner. The second part of the work is concerned with the study of atomic structure changes under temperature increasing within the new model based on Molecular Dynamics. Within the scope of this model, coordinates of the atoms in the area nearby of vacancy complex or nanovoid surface are averaged, during a simulation. Obtained mean positions of atoms are used for calculation of averaged interatomic distances; that allows determining lattice-parameter temperature dependence and then temperature-determined changes of atomic structure in the defects’ vicinity. Simulation is performed for various f.c.c. and b.c.c. metals. For these metals, thermal expansion data are obtained, and the change of atomic structure in the defects’ vicinity is determined from temperature increase. Багато властивостей металів визначаються дефектами, їхніми комплексами і нанопорами, тоді як властивості цих дефектів, взагалі кажучи, пов’язані зі змінами атомної структури поблизу цих дефектів. У даній роботі нещодавно запропонований підхід застосовується для симуляції вакансійних комплексів та нанопор. Нещодавно запропонована модель на основі методи молекулярної статики використовується для дослідження особливостей атомної структури в околі вакансійних комплексів і нанопор, а також уможливлює самоузгодженим чином знайти атомні зміщення у пружньому середовищі, яке оточує розрахункову комірку. Другу частину роботи присвячено вивченню змін атомної структури зі зростанням температури, шляхом застосування нової моделі, яка ґрунтується вже на молекулярній динаміці. В рамках даної моделі координати атомів поблизу вакансійних комплексів або поверхні нанопор усереднюються в процесі симуляції. Одержані середні положення атомів використовуються для розрахунку усереднених міжатомних відстаней, що уможливлює спочатку одержати температурну залежність параметра ґратниці, а потім обумовлені температурою зміни атомної структури в околі дефектів. Моделювання проводилося для різних ГЦК- та ОЦК-металів. Для цих металів одержано дані для теплового розширення, а також визначено зміну атомної структури в околі дефектів при зростанні температури. Многие свойства металлов определяются дефектами, их комплексами и нанопорами, тогда как свойства этих дефектов, вообще говоря, связаны с изменениями атомной структуры вблизи этих дефектов. В данной работе недавно предложенный подход применяется для симуляции вакансионных комплексов и нанопор. Недавно предложенная модель на основе метода молекулярной статики используется для исследования особенностей атомной структуры в окрестности вакансионных комплексов и нанопор, а также позволяет самосогласованным образом найти атомные смещения в упругой среде, окружающей расчётную ячейку. Вторая часть работы посвящена изучению изменений атомной структуры с ростом температуры путём применения новой модели, основанной уже на молекулярной динамике. В рамках данной модели координаты атомов вблизи вакансионных комплексов или поверхности нанопор усредняются в процессе симуляции. Полученные средние положения атомов используются для расчёта усреднённых межатомных расстояний, что позволяет сначала получить температурную зависимость параметра решётки, а затем обусловленные температурой изменения атомной структуры в окрестности дефектов. Моделирование проводилось для различных ГЦК- и ОЦК-металлов. Для этих металлов получены данные для теплового расширения, а также определено измене
issn 1024-1809
url https://nasplib.isofts.kiev.ua/handle/123456789/104223
citation_txt Atomic Structure in the Vicinity of Nanovoids and Features of These Defects / A.B. Germanov, I.V. Ershova, E.V. Kislitskaya, A.V. Nazarov, A.G. Zaluzhnyi // Металлофизика и новейшие технологии. — 2013. — Т. 35, № 10. — С. 1319-1331. — Бібліогр.: 14 назв. — рос.
work_keys_str_mv AT germanovab atomicstructureinthevicinityofnanovoidsandfeaturesofthesedefects
AT ershovaiv atomicstructureinthevicinityofnanovoidsandfeaturesofthesedefects
AT kislitskayaev atomicstructureinthevicinityofnanovoidsandfeaturesofthesedefects
AT nazarovav atomicstructureinthevicinityofnanovoidsandfeaturesofthesedefects
AT zaluzhnyiag atomicstructureinthevicinityofnanovoidsandfeaturesofthesedefects
AT germanovab atomnaâstrukturavblizinanoporiosobennostiétihdefektov
AT ershovaiv atomnaâstrukturavblizinanoporiosobennostiétihdefektov
AT kislitskayaev atomnaâstrukturavblizinanoporiosobennostiétihdefektov
AT nazarovav atomnaâstrukturavblizinanoporiosobennostiétihdefektov
AT zaluzhnyiag atomnaâstrukturavblizinanoporiosobennostiétihdefektov
first_indexed 2025-11-26T00:08:19Z
last_indexed 2025-11-26T00:08:19Z
_version_ 1850591978998202368
fulltext 1319 ДЕФЕКТЫ КРИСТАЛЛИЧЕСКОЙ РЕШЁТКИ PACS numbers: 61.72.Bb, 61.72.jd, 65.40.De Atomic Structure in the Vicinity of Nanovoids and Features of These Defects A. B. Germanov*,**, I. V. Ershova**, E. V. Kislitskaya**, A. V. Nazarov*,**, and A. G. Zaluzhnyi*,** *SSC RF ‘Institute for Theoretical and Experimental Physics’, 25 Bolshaya Cheremushkinskaya Str., 117218 Moscow, Russia **National Research Nuclear University, 31 Kashirskoe shosse, 115409 Moscow, Russia Many properties of metals are determined by the defects, such as point de- fects, their complexes and nanovoids, whereas properties of these defects are generally related to the changes in atomic structure in the vicinity of these defects. In this work, recently developed approach is applied to simulate va- cancy complexes and nanovoids. A developed model on the basis of Molecular Statics is used to investigate the atomic structure peculiarities in the vicinity of vacancy complexes and nanovoids, and the atomic displacements in the elastic medium surrounding the computational cell are determined in a self-consistent manner. The second part of the work is concerned with the study of atomic struc- ture changes under temperature increasing within the new model based on Mo- lecular Dynamics. Within the scope of this model, coordinates of the atoms in the area nearby of vacancy complex or nanovoid surface are averaged, during a sim- ulation. Obtained mean positions of atoms are used for calculation of averaged interatomic distances; that allows determining lattice-parameter temperature dependence and then temperature-determined changes of atomic structure in the defects’ vicinity. Simulation is performed for various f.c.c. and b.c.c. metals. For these metals, thermal expansion data are obtained, and the change of atomic structure in the defects’ vicinity is determined from temperature increase. Багато властивостей металів визначаються дефектами, їхніми комплек- сами і нанопорами, тоді як властивості цих дефектів, взагалі кажучи, пов’язані зі змінами атомної структури поблизу цих дефектів. У даній роботі нещодавно запропонований підхід застосовується для симуляції вакансійних комплексів та нанопор. Нещодавно запропонована модель на основі методи молекулярної статики використовується для дослідження особливостей атомної структури в околі вакансійних комплексів і нано- Металлофиз. новейшие технол. / Metallofiz. Noveishie Tekhnol. 2013, т. 35, № 10, сс. 1319—1331 Оттиски доступны непосредственно от издателя Фотокопирование разрешено только в соответствии с лицензией 2013 ИМФ (Институт металлофизики им. Г. В. Курдюмова НАН Украины) Напечатано в Украине. 1320 A. B. GERMANOV, I. V. ERSHOVA, E. V. KISLITSKAYA et al. пор, а також уможливлює самоузгодженим чином знайти атомні зміщен- ня у пружньому середовищі, яке оточує розрахункову комірку. Другу ча- стину роботи присвячено вивченню змін атомної структури зі зростанням температури, шляхом застосування нової моделі, яка ґрунтується вже на молекулярній динаміці. В рамках даної моделі координати атомів поблизу вакансійних комплексів або поверхні нанопор усереднюються в процесі си- муляції. Одержані середні положення атомів використовуються для розра- хунку усереднених міжатомних відстаней, що уможливлює спочатку одер- жати температурну залежність параметра ґратниці, а потім обумовлені те- мпературою зміни атомної структури в околі дефектів. Моделювання про- водилося для різних ГЦК- та ОЦК-металів. Для цих металів одержано дані для теплового розширення, а також визначено зміну атомної структури в околі дефектів при зростанні температури. Многие свойства металлов определяются дефектами, их комплексами и нанопорами, тогда как свойства этих дефектов, вообще говоря, связаны с изменениями атомной структуры вблизи этих дефектов. В данной работе недавно предложенный подход применяется для симуляции вакансион- ных комплексов и нанопор. Недавно предложенная модель на основе ме- тода молекулярной статики используется для исследования особенностей атомной структуры в окрестности вакансионных комплексов и нанопор, а также позволяет самосогласованным образом найти атомные смещения в упругой среде, окружающей расчётную ячейку. Вторая часть работы по- священа изучению изменений атомной структуры с ростом температуры путём применения новой модели, основанной уже на молекулярной ди- намике. В рамках данной модели координаты атомов вблизи вакансион- ных комплексов или поверхности нанопор усредняются в процессе симу- ляции. Полученные средние положения атомов используются для расчёта усреднённых межатомных расстояний, что позволяет сначала получить температурную зависимость параметра решётки, а затем обусловленные температурой изменения атомной структуры в окрестности дефектов. Моделирование проводилось для различных ГЦК- и ОЦК-металлов. Для этих металлов получены данные для теплового расширения, а также определено изменение атомной структуры в окрестности дефектов при росте температуры. Key words: point defects, vacancy complexes, nanovoids, b.c.c. metals, f.c.c. metals, Molecular Statics, Molecular Dynamics, simulation. (Received June 12, 2013) 1. INTRODUCTION A considerable amount of micro- and nanovoids is generated in systems under extreme conditions such as irradiation. The defects play a sig- nificant role in the processes of material structure forming, diffusion phase transformations, swelling, etc. Therefore, it is necessary to de- velop the methods of determining the defects characteristics. It is ob- ATOMIC STRUCTURE IN THE VICINITY OF NANOVOIDS 1321 vious that defect characteristics are determined by the atomic struc- ture. Atoms surrounding defect shift from the sites of ideal lattice, e.g. defect atomic structure changes with respect to an ideal one; that, in turn, leads to changes in interaction energy of neighbour atoms and results in modification of defect energy characteristics and other fea- tures. In general, displacement fields in the vicinity of voids and nano- voids were determined by the solution of equations from the classical theory of elasticity. However, the validity of the theory of elasticity in the case of nanovoids appears to be doubtful as for this kind of defects, as well as for point defects, the usual usability condition does not meet the conditions of the above-mentioned theory R  a, where R is the nanovoid radius and a is the lattice parameter. In other words, a de- scription of displacement fields near the nanovoids in the framework of the theory of elasticity appears to be problematic, as it does not take into account the discrete atomic structure of materials. For the better understanding of the arising problem, let us look at the results of the works that dealt with the determination of the dis- placement fields near point defects. In the work of Dederichs and Pollmann [1], the general equations for the displacement field of point defects in cubic crystals are given and some exact results are presented on the basis of anisotropic elasticity theory. One from these exact re- sults, which concerns the displacement field of point defects in cubic crystals in the direction (100), coincides with one for the cubic axes: , )2)(( ))(( 2 1 4 )100( 44121112114411 44121211 441211 21           ccccccc cccc c d ccr P S (1) where cij are the elastic constants, d  c11  c12  2c44, P is the spur of the dipole forces tensor Pij. In another work [2], the atomic structure in the vicinity of monovacancy is determined, using the model [3, 4], which takes into account the atomic displacements in the elastic continuum surrounding the computational cell. In Figure 1, the simulation results for displacements of atoms in the vicinity of vacancy in the directions (100), (110), (111) are presented. In this figure, the values for displacements in the direction (100) are shown as a dashed line, another curve shows the displacements being calculated by Eq. (1), given in article [1] by Dederichs. From Figure 1, it can be seen, that the magnitudes of atomic displace- ments, obtained by Molecular Statics (MS), differ significantly from the predictions of the anisotropic theory of elasticity. It should be emphasized that the displacement fields in the vicinity of vacancy obtained from the computer simulation take into account anisotropy of media as well as its discreteness, and these results lead us to the conclusion that the discrete- ness factor for this problem is more vital than the influence of anisotropy. The main aim of displacement field investigation in the vicinity of 1322 A. B. GERMANOV, I. V. ERSHOVA, E. V. KISLITSKAYA et al. nanovoids is related to the evaluation of displacement field influence on the void growth rate (the kinetic equations for the growth rate of the voids in cubic metals are obtained, taking into consideration the elastic strains arising from voids in [5], based on the general equations for the vacancy fluxes under strain obtained in [6]), and, therefore, there is a vital necessity to know displacements at the surface and within the thin surface layer. That is why the information about dis- placement fields, which can be obtained with the help of anisotropic elasticity theory, does not allow to solve the specified problem. In our recent works [2—4], a new approach was developed. In particular, in this approach an iterative procedure is used, in which the atomic structure in the vicinity of point defect and C1 constant, determining the displacement of atoms embedded into an elastic continuum, are obtained in a self-consistent manner. The vacancy features (including formation volumes and migration volumes) obtained for a number of cubic metals agree well with experimental values [2]. In this work, we use our approach for direct investigation of the atomic structure in the vicinity of vacancy complexes and nanovoids. Molec- ular Dynamics is used in the second part to investigate the changes of atomic structure with the temperature increase. Thus, the obtained atoms positions give us the possibility to determine these defects characteristics and to per- form more advanced level simulation of nanovoid growth in materials, su- persaturated with vacancies, in particular under irradiation. 2. SIMULATION OF MOLECULAR STATICS OF ATOMIC STRUCTURE The equilibrium positions of atoms in the computational cell are simu- lated using a variational procedure, which is usually employed in the Fig. 1. The displacement field for the vacancy in case of the simulation data for the directions (markers) and calculated from the Eq. (1). ATOMIC STRUCTURE IN THE VICINITY OF NANOVOIDS 1323 molecular statics method [2, 3]. The computational cell (zone I, Fig. 2) is a sphere containing more than 60000 atoms. It is surrounded by atoms embedded into an elastic medium (zone II, Fig. 2). The displacements u of these atoms, connect- ed with the disturbances caused by a pore, are found on the basis of the first term of the static isotropic elastic equation solution [2—4]: u  C1r/r 3. (2) In this model, a self-consistent iterative procedure is introduced to calculate the C1 constant as well as the atomic structure simulation in the crystal with a defect. The constant C1 is calculated according to Eq. (2) using the results of atomic displacements simulation in the compu- tational cell for the atoms in the coordination shells that are located in a spherical layer III. The constant C1 calculated at the previous step of the iterative procedure is used to determine atomic displacements of the elastic medium II. Then, the relaxation of the atoms of zone I is carried out anew, and the constant C1 is calculated again. Thus, obtained atomic structure in the vicinity of pores is compared with the displacement field from the solution of equations from the the- ory of elasticity. According to classical theory of elasticity, displace- ments fields in a spherical layer G in region near void of radius R [7]: 0 1 0 13 3 3 33 0 13 3 3 3 , , ( 2 / )1 2 ( 2 / ) 1 , , 2 x y G G G x y u C x C u C y C r r p R R Rp R R C C E ER R R R               (3) where  is the Poisson ratio, E is the Young modulus,  is the specific surface energy, p is the internal pressure, RG is the radius of the sphere Fig. 2. Scheme of computational cell: I–directly computational cell, II– atoms embedded in an elastic continuum, III–atoms for C1 calculation. 1324 A. B. GERMANOV, I. V. ERSHOVA, E. V. KISLITSKAYA et al. which volume equals to the average volume per void. In our calcula- tions, only one void is taken into account and C0 equals to zero. 3. RESULTS OF MS SIMULATION The simulation is done for vacancy complex of 15 vacancies (we may consider it as nanovoid of r  5.72 Å) and for nanovoid of size r  8.08 Å that has atoms of up to 2 and 10 coordination shells deleted. The pair- wise potential for b.c.c. iron is used [8]. The results for displacement fields ux at z  0 obtained using MS simulation and equations from the theory of elasticity (Eq. (3)) for two pores are presented in Fig. 3 and Fig. 4. From the symmetry considera- tions, it is clear that the displacement fields obtained for uy are similar to ux and differ just by a 90 degrees rotation over z-axis. Predicted by the MS simulation, displacement fields as a function of coordinates in the vicinity of nanovoids have functionally complex non-monotonic character, unlike the results from the theory of elasticity. Their shapes are more complicated, include several differently localized maximums and minimums, absolute value of which is larger in comparison with the results, given by equations from the classical theory of elasticity. These peculiarities of displacement fields should be taken into consid- eration, when simulating void growth rate takes into account elastic fields, generated by nanovoids. From elastic theory, it is known that volume change connected with lattice relaxation during defect formation linearly depends on C1 constant [2, 3]: V  4C1. (4) It should be emphasized that the results of self-consistent calculation Fig. 3. The displacement field for the vacancy complex of 15 vacancies (nano- void with radius r  2a  5.72 Å) as obtained, using MS simulation (left) and using equation from the theory of elasticity (right). ATOMIC STRUCTURE IN THE VICINITY OF NANOVOIDS 1325 for atomic structure in the vicinity of vacancy complexes and nanovoids point out a non-monotonic character of size dependence of the relaxation volume, unlike the results from the theory of elasticity (Eq. (3)). 3.1. Molecular Dynamics Simulation of Thermal Expansion and Atomic Structure in the Vicinity of Vacancies, Vacancy Complexes, and Nanovoids Some time ago, we suggested a new model to simulate atomic structure changes caused by temperature [12, 13]. At first, we describe main fea- tures of the model in a short paragraph, and then simulation results concerned with a thermal expansion of some metals and an atomic structure in the vicinity of vacancies at finite temperatures are pre- sented to illustrate abilities of our model. Last, results of simulation for vacancy complexes and nanovoids are presented. 3.2. Model for Atomic Structure Simulation at Finite Temperature Atomic structure of defectless crystal is studied by Molecular Dynamics (MD) using velocity Verlet algorithm. The computational cell has free- boundary conditions and a spherical shape and contains up to 50000 atoms. Coordinates of the central atom and its neighbours inside the nearest shells are averaged during a simulation run that lasts for large number of vibra- tions of the atom on the lattice site (up to 1000 vibration periods) (Fig. 5). This procedure of getting interatomic distances from averaged posi- Fig. 4. The displacement field for the nanovoid with radius  3/2 (3 /2)r a   7.43 Å as obtained, using MS simulation (left) and using equation from the theory of elasticity (right). 1326 A. B. GERMANOV, I. V. ERSHOVA, E. V. KISLITSKAYA et al. tions of atom in the centre of MD cell is applied to lattice of defectless crys- tal. Using interatomic distances and geometry of f.c.c. and b.c.c. struc- tures, we directly get lattice parameter. Thus, lattice parameter is deter- mined in the nearly the same way as it is done in X-Ray measurements: in experiment, lattice parameter is obtained directly from such structure characteristics as interplanar spacing, whereas in our simulation lattice parameter is directly obtained from interatomic positions. Repeating this simulation at different increasing temperatures, we get the temperature dependence of the lattice parameter. These thermal expansion curves for f.c.c. and b.c.c. metals are shown on Fig. 6 (for iron in the range from 1185 K to 1667 K the data are shown for metastable b.c.c. lattice). The simulation data show good agreement with the results of experi- ments (X-ray lattice parameter determination) [14]. As our model gives reliable results concerning changes of interatomic distances and lattice parameters with temperature in defectless lattice, i.e. describes tempera- ture changes in distances between atoms, therefore, this model is ex- pected to describe the changes of atomic structure in the presence of de- fects. 3.2.1. Atomic Structure in the Vicinity of Vacancies at Finite Temperatures Further, the method of getting lattice parameter via obtained intera- tomic distances from mean positions of atoms is applied for vacancies. In this case, the atom in centre of computational cell is deleted and dis- tances between atoms in the nearest neighbour shells to the defect are calculated (Fig. 5). Fig. 5. B.c.c. structure with atoms of two nearest-neighbour shells: hollow– atom in the centre of computational cell (site of the deleted atom in case of vacan- cy), filled–nearest-neighbour atoms, striped–next-nearest neighbour atoms. ATOMIC STRUCTURE IN THE VICINITY OF NANOVOIDS 1327 Using the results for perfect crystal and for crystal with vacancy, we get the temperature dependence of the ratio of distances for some nearest shells in the system with vacancy to lattice parameter obtained in perfect lattice (Fig. 7). Fig. 7. Temperature dependence of ratio of distances between the centre of empty site (vacancy) and atoms in its nearest shells to lattice parameter for f.c.c. Ni (potential [11]). Fig. 6. Thermal expansion of b.c.c and f.c.c. metals: Fe (potential [9]), V (po- tential [10]), Al, Ni (potentials [11, 12]). 1328 A. B. GERMANOV, I. V. ERSHOVA, E. V. KISLITSKAYA et al. We obtain a rather not obvious result that, for the whole tempera- ture range beginning with fifth nearest shells, the ratio under study remains constant with temperature (see Fig. 7). Our simulation is performed for the shells nearest to the vacancy. Because quantity of atomic displacements decreases significantly with the distance from vacant site increasing in comparison with the near- est shells, it should be expected that for shells having larger radius the ratio of these shells radius to the lattice parameter conserves as well. Then, we may conclude that geometrical similarity of atomic structure in the vicinity of vacancies beginning with fifth nearest shells pre- serves as the temperature increases. Whence an interesting and vital effect follows: ground state atomic structure from the Molecular Stat- ics and thermal expansion data both give the possibility to calculate the atomic structure in the vicinity of vacancy for any temperature and, consequently, to calculate the temperature dependence of vacancy formation characteristics such as relaxation volumes and formation volumes [13]. 3.2.2. Results of Simulation for Vacancy Complexes and Nanovoids The same procedure is applied for vacancy complexes and nanovoids. Similarly to the case of vacancy, the atoms in the centre of the compu- tational cell are deleted to create a vacancy complex or a nanovoid. From average atomic positions (Fig. 8), we calculate interatomic dis- Fig. 8. Void representation: hollow–sites of deleted atoms, filled–nearest- neighbour atoms, and striped–next-nearest neighbour atoms. ATOMIC STRUCTURE IN THE VICINITY OF NANOVOIDS 1329 tances in the nearest shell to the void border. The simulation is done for vacancy complexes and nanovoids of the same size as in MS simulation. The results of simulation for nanovoids are shown in Fig. 9. The ratio of distances between nearest neighbour atoms and centre of defect to lattice parameter beginning with fifth nearest shells re- mains constant. As a result, we can state that in the case of vacancy complexes as well as in the case of nanovoids the same regularities that were held true for vacancies are satisfied. This fact and its very signif- icant conclusions should be further investigated concerning the stud- ies of void growth in the presence of elastic fields. Then, it is shown that the ratio of relaxation volume to the atomic volume (or in the units of atomic volume ) remains constant as the a b Fig. 9. Temperature dependence of ratio of distances between defect centre and atoms in its nearest shells to lattice parameter for b.c.c. Fe [8]: vacancy complex of 15 vacancies (rvoid  2a) (a); nanovoid of radius 7.43 Å (  void r  3/2 (3 /2)a ) (b). 1330 A. B. GERMANOV, I. V. ERSHOVA, E. V. KISLITSKAYA et al. temperature changes. Therefore, the C1 value is temperature dependent: 3222 1 )1)(0()0()]1)(0()][1)(0([)()()( TruTrTuTrTuTC  (5) and .)1)(0()( 3 11 TCTC  Therefore, all the quantities entering in the definition of C1 may also depend on temperature. 4. CONCLUSION A model based on Molecular Dynamics and Molecular Statics is intro- duced which allows to determine atomic structure in the vicinity of ag- gregate defects, such as vacancy complexes and nanovoids. More thor- ough investigation of atomic structure using Molecular Statics permits to find qualitatively new peculiarities in displacement fields from nano- voids that cannot be correctly obtained with the use of equations from the theory of elasticity, because they cannot be applied to the atomic scale. The fields of displacements in the vicinity of nanovoids are signif- icantly more complicated and with much bigger magnitudes of dis- placements than in the vicinity of vacancies. The displacement fields from our calculations should be taken into account in void growth simu- lations with the effects of elastic fields, generated by nanovoids. The results concerning geometrical similarity preservation of the atomic structure beginning with the fifth nearest shells in the vicinity of vacancy during the temperature changes in metals are shown to be correct in the case of nanovoids as well. As the surface curvature for voids of larger radius will decrease, we may suggest that the preserva- tion of geometrical similarity in atomic structure will hold true. REFERENCES 1. P. H. Dederichs and J. Pollmann, Z. Phys., 255, No. 4: 315 (1972). 2. I. V. Valikova and A. V. Nazarov, Phys. Met. Metallogr., 109, No. 3: 220 (2010). 3. I. Valikova and A. Nazarov, Defect Diffus. Forum, 277: 125 (2008). 4. I. V. Valikova and A. V. Nazarov, Phys. Met. Metallogr., 105: 544 (2008). 5. A. Nazarov, A. Mikheev, I. Valikova, and A. Zaluzhnyi, Solid State Phenom., 172—174: 1156 (2011). 6. A. V. Nazarov and A. A. Mikheev, J. Phys.: Condens. Matter, 20: 485203 (2008). 7. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Oxford: Elsevier: 1986). 8. R. A. Johnson, Phys. Rev., 134, No. 5A: 1329 (1964). 9. M. I. Mendelev, S. Han, D. J. Srolovitz et al., Philos. Mag., 83: 3977 (2003). 10. P. M. Derlet, D. Nguyen-Manh, and S. L. Dudarev, Phys. Rev. B, 76: 054107 (2007). ATOMIC STRUCTURE IN THE VICINITY OF NANOVOIDS 1331 11. Y. Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstantopoulos, Phys. Rev. B, 59: 3393 (1999). 12. E. Reshetnikova, A. Germanov, I. Valikova, and A. Nazarov, Proc. of Interna- tional Conference ‘Diffusion Fundamentals III’ (August 23—26, 2009) (Athens: 2009), p. 324. 13. Presented for publication. 14. W. B. Pearson, Handbook of Lattice Spacings and Structures of Metals and Alloys (Franklin Book Co: 1964). << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E> /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e> /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002> /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002> /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e> /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e> /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e> /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e> /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a> /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e> /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e> /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E> /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e> /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e> /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002> /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e> /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e> /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e> /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e> /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e> /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e> /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e> /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e> /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e> /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e> /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e> /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e> /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e> /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e> /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice