Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure

An asymptotic behavior of solution of the Cauchy problem for the wave equation is studied on the Riemannian manifold Mε depending on a small parameter ε. It is supposed that a topological type of Mε increases as ε → 0. The averaged equation is derived, it describes the asymptotic behavior of the ori...

Full description

Saved in:
Bibliographic Details
Published in:Журнал математической физики, анализа, геометрии
Date:2007
Main Author: Khrabustovskyi, A.V.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2007
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/106446
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure / A.V. Khrabustovskyi // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 213-233. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-106446
record_format dspace
spelling Khrabustovskyi, A.V.
2016-09-28T19:03:32Z
2016-09-28T19:03:32Z
2007
Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure / A.V. Khrabustovskyi // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 213-233. — Бібліогр.: 5 назв. — англ.
1812-9471
https://nasplib.isofts.kiev.ua/handle/123456789/106446
An asymptotic behavior of solution of the Cauchy problem for the wave equation is studied on the Riemannian manifold Mε depending on a small parameter ε. It is supposed that a topological type of Mε increases as ε → 0. The averaged equation is derived, it describes the asymptotic behavior of the original Cauchy problem as ε → 0.
The Author thanks deeply Prof. E.Ya. Khruslov for the statement of problem and the attention he paid to this work.
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Журнал математической физики, анализа, геометрии
Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure
spellingShingle Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure
Khrabustovskyi, A.V.
title_short Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure
title_full Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure
title_fullStr Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure
title_full_unstemmed Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure
title_sort klein-gordon equation as a result of wave equation averaging on the riemannian manifold of complex microstructure
author Khrabustovskyi, A.V.
author_facet Khrabustovskyi, A.V.
publishDate 2007
language English
container_title Журнал математической физики, анализа, геометрии
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
description An asymptotic behavior of solution of the Cauchy problem for the wave equation is studied on the Riemannian manifold Mε depending on a small parameter ε. It is supposed that a topological type of Mε increases as ε → 0. The averaged equation is derived, it describes the asymptotic behavior of the original Cauchy problem as ε → 0.
issn 1812-9471
url https://nasplib.isofts.kiev.ua/handle/123456789/106446
citation_txt Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure / A.V. Khrabustovskyi // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 213-233. — Бібліогр.: 5 назв. — англ.
work_keys_str_mv AT khrabustovskyiav kleingordonequationasaresultofwaveequationaveragingontheriemannianmanifoldofcomplexmicrostructure
first_indexed 2025-12-07T18:25:21Z
last_indexed 2025-12-07T18:25:21Z
_version_ 1850874969822593024