Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure
An asymptotic behavior of solution of the Cauchy problem for the wave equation is studied on the Riemannian manifold Mε depending on a small parameter ε. It is supposed that a topological type of Mε increases as ε → 0. The averaged equation is derived, it describes the asymptotic behavior of the ori...
Saved in:
| Published in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Date: | 2007 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2007
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/106446 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure / A.V. Khrabustovskyi // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 213-233. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-106446 |
|---|---|
| record_format |
dspace |
| spelling |
Khrabustovskyi, A.V. 2016-09-28T19:03:32Z 2016-09-28T19:03:32Z 2007 Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure / A.V. Khrabustovskyi // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 213-233. — Бібліогр.: 5 назв. — англ. 1812-9471 https://nasplib.isofts.kiev.ua/handle/123456789/106446 An asymptotic behavior of solution of the Cauchy problem for the wave equation is studied on the Riemannian manifold Mε depending on a small parameter ε. It is supposed that a topological type of Mε increases as ε → 0. The averaged equation is derived, it describes the asymptotic behavior of the original Cauchy problem as ε → 0. The Author thanks deeply Prof. E.Ya. Khruslov for the statement of problem and the attention he paid to this work. en Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України Журнал математической физики, анализа, геометрии Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure |
| spellingShingle |
Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure Khrabustovskyi, A.V. |
| title_short |
Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure |
| title_full |
Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure |
| title_fullStr |
Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure |
| title_full_unstemmed |
Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure |
| title_sort |
klein-gordon equation as a result of wave equation averaging on the riemannian manifold of complex microstructure |
| author |
Khrabustovskyi, A.V. |
| author_facet |
Khrabustovskyi, A.V. |
| publishDate |
2007 |
| language |
English |
| container_title |
Журнал математической физики, анализа, геометрии |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| format |
Article |
| description |
An asymptotic behavior of solution of the Cauchy problem for the wave equation is studied on the Riemannian manifold Mε depending on a small parameter ε. It is supposed that a topological type of Mε increases as ε → 0. The averaged equation is derived, it describes the asymptotic behavior of the original Cauchy problem as ε → 0.
|
| issn |
1812-9471 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/106446 |
| citation_txt |
Klein-Gordon Equation as a Result of Wave Equation Averaging on the Riemannian Manifold of Complex Microstructure / A.V. Khrabustovskyi // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 213-233. — Бібліогр.: 5 назв. — англ. |
| work_keys_str_mv |
AT khrabustovskyiav kleingordonequationasaresultofwaveequationaveragingontheriemannianmanifoldofcomplexmicrostructure |
| first_indexed |
2025-12-07T18:25:21Z |
| last_indexed |
2025-12-07T18:25:21Z |
| _version_ |
1850874969822593024 |