On Stability of Polynomially Bounded Operators
We prove that if T is a polynomially bounded operator and the peripheral spectrum of T has zero measure, then Tⁿx → 0 for all x in X if and only if T* has no nontrivial invariant subspace on which it is invertible and doubly power bounded.
Gespeichert in:
| Veröffentlicht in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Datum: | 2007 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2007
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/106447 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On Stability of Polynomially Bounded Operators азвание / G. Muraz, Quoc Phong Vu // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 234-240. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-106447 |
|---|---|
| record_format |
dspace |
| spelling |
Muraz, G. Quoc Phong Vu 2016-09-28T19:04:48Z 2016-09-28T19:04:48Z 2007 On Stability of Polynomially Bounded Operators азвание / G. Muraz, Quoc Phong Vu // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 234-240. — Бібліогр.: 13 назв. — англ. 1812-9471 https://nasplib.isofts.kiev.ua/handle/123456789/106447 We prove that if T is a polynomially bounded operator and the peripheral spectrum of T has zero measure, then Tⁿx → 0 for all x in X if and only if T* has no nontrivial invariant subspace on which it is invertible and doubly power bounded. en Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України Журнал математической физики, анализа, геометрии On Stability of Polynomially Bounded Operators Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On Stability of Polynomially Bounded Operators |
| spellingShingle |
On Stability of Polynomially Bounded Operators Muraz, G. Quoc Phong Vu |
| title_short |
On Stability of Polynomially Bounded Operators |
| title_full |
On Stability of Polynomially Bounded Operators |
| title_fullStr |
On Stability of Polynomially Bounded Operators |
| title_full_unstemmed |
On Stability of Polynomially Bounded Operators |
| title_sort |
on stability of polynomially bounded operators |
| author |
Muraz, G. Quoc Phong Vu |
| author_facet |
Muraz, G. Quoc Phong Vu |
| publishDate |
2007 |
| language |
English |
| container_title |
Журнал математической физики, анализа, геометрии |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| format |
Article |
| description |
We prove that if T is a polynomially bounded operator and the peripheral spectrum of T has zero measure, then Tⁿx → 0 for all x in X if and only if T* has no nontrivial invariant subspace on which it is invertible and doubly power bounded.
|
| issn |
1812-9471 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/106447 |
| citation_txt |
On Stability of Polynomially Bounded Operators азвание / G. Muraz, Quoc Phong Vu // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 234-240. — Бібліогр.: 13 назв. — англ. |
| work_keys_str_mv |
AT murazg onstabilityofpolynomiallyboundedoperators AT quocphongvu onstabilityofpolynomiallyboundedoperators |
| first_indexed |
2025-12-07T20:57:14Z |
| last_indexed |
2025-12-07T20:57:14Z |
| _version_ |
1850884524959858688 |