On the Koplienko Spectral Shift Function. I. Basics

We study the Koplienko Spectral Shift Function (KoSSF), which is distinct from the one of Krein (KrSSF). KoSSF is defined for pairs A,B with (A - B) is in I₂, the Hilbert{Schmidt operators, while KrSSF is defined for pairs A,B with (A - B) is in I₁, the trace class operators. We review various aspec...

Full description

Saved in:
Bibliographic Details
Published in:Журнал математической физики, анализа, геометрии
Date:2008
Main Authors: Gesztesy, F., Pushnitski, A., Simon, B.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2008
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/106495
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On the Koplienko Spectral Shift Function. I. Basics / F. Gesztesy, A. Pushnitski, B. Simon // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 1. — С. 63-107. — Бібліогр.: 71 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We study the Koplienko Spectral Shift Function (KoSSF), which is distinct from the one of Krein (KrSSF). KoSSF is defined for pairs A,B with (A - B) is in I₂, the Hilbert{Schmidt operators, while KrSSF is defined for pairs A,B with (A - B) is in I₁, the trace class operators. We review various aspects of the construction of both KoSSF and KrSSF. Among our new results are: (i) that any positive Riemann integrable function of compact support occurs as a KoSSF; (ii) that there exist A,B with (A - B) is in I₂ so det₂((A - z)(B - z)⁻¹) does not have nontangential boundary values; (iii) an alternative definition of KoSSF in the unitary case; and (iv) a new proof of the invariance of the a.c. spectrum under I₁-perturbations that uses the KrSSF.
ISSN:1812-9471