Scattering from Sparse Potentials on Graphs
We study the spectral structure of Schrodinger operators H = Δ+V for random potentials supported on sparse sets. In the past years examples of such operators whose spectra almost surely satisfy the following properties have been exhibited: Anderson localization holds outside spec(Δ), while the wave...
Saved in:
| Published in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Date: | 2008 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2008
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/106499 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Scattering from Sparse Potentials on Graphs / Ph. Poulin // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 1. — С. 151-170. — Бібліогр.: 29 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-106499 |
|---|---|
| record_format |
dspace |
| spelling |
Poulin, Ph. 2016-09-29T17:35:37Z 2016-09-29T17:35:37Z 2008 Scattering from Sparse Potentials on Graphs / Ph. Poulin // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 1. — С. 151-170. — Бібліогр.: 29 назв. — англ. 1812-9471 https://nasplib.isofts.kiev.ua/handle/123456789/106499 We study the spectral structure of Schrodinger operators H = Δ+V for random potentials supported on sparse sets. In the past years examples of such operators whose spectra almost surely satisfy the following properties have been exhibited: Anderson localization holds outside spec(Δ), while the wave operators Ω⁺(H, Δ) exist inside this last set. We continue this program by presenting sparseness conditions under which Ω⁺(Δ, H) also exist. en Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України Журнал математической физики, анализа, геометрии Scattering from Sparse Potentials on Graphs Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Scattering from Sparse Potentials on Graphs |
| spellingShingle |
Scattering from Sparse Potentials on Graphs Poulin, Ph. |
| title_short |
Scattering from Sparse Potentials on Graphs |
| title_full |
Scattering from Sparse Potentials on Graphs |
| title_fullStr |
Scattering from Sparse Potentials on Graphs |
| title_full_unstemmed |
Scattering from Sparse Potentials on Graphs |
| title_sort |
scattering from sparse potentials on graphs |
| author |
Poulin, Ph. |
| author_facet |
Poulin, Ph. |
| publishDate |
2008 |
| language |
English |
| container_title |
Журнал математической физики, анализа, геометрии |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| format |
Article |
| description |
We study the spectral structure of Schrodinger operators H = Δ+V for random potentials supported on sparse sets. In the past years examples of such operators whose spectra almost surely satisfy the following properties have been exhibited: Anderson localization holds outside spec(Δ), while the wave operators Ω⁺(H, Δ) exist inside this last set. We continue this program by presenting sparseness conditions under which Ω⁺(Δ, H) also exist.
|
| issn |
1812-9471 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/106499 |
| citation_txt |
Scattering from Sparse Potentials on Graphs / Ph. Poulin // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 1. — С. 151-170. — Бібліогр.: 29 назв. — англ. |
| work_keys_str_mv |
AT poulinph scatteringfromsparsepotentialsongraphs |
| first_indexed |
2025-12-07T18:04:45Z |
| last_indexed |
2025-12-07T18:04:45Z |
| _version_ |
1850873673724985344 |