An Invariant Form of the Euler-Lagrange Operator
We define a class of almost S(M)-multilinear maps. The Euler-Lagrange operator is given by means of the trace of an almost S(M)-bilinear map.
Saved in:
| Published in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Date: | 2008 |
| Main Author: | Milewski, J. |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2008
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/106506 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | An Invariant Form of the Euler-Lagrange Operator / J. Milewski // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 2. — С. 267-277. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
On the classification of symmetry reductions and invariant solutions for the Euler–Lagrange–Born–Infeld equation
by: V. M. Fedorchuk, et al.
Published: (2019) -
On the classification of symmetry reductions and invariant solutions for the Euler–Lagrange–Born–Infeld equation
by: V. M. Fedorchuk, et al.
Published: (2019) -
On Lagrangians with Reduced-Order Euler-Lagrange Equations
by: Saunders, D.
Published: (2018) -
Invariant varieties of periodic points for the discrete Euler top
by: Saito, S., et al.
Published: (2006) -
Invariant solutions of a system of Euler equations that satisfy the Rankine—Hugoniot conditions
by: I. I. Yuryk
Published: (2018)