A Property of Azarin's Limit Set of Subharmonic Functions
Let v(z) be a subharmonic function of order ρ > 0, and Fr(v) be the limit set in the sense of Azarin. Let z be fixed and I(z) = {u(z) : u is in Fr(v)}. We prove that I(z) is either a closed interval or a semiclosed interval which does not contain its infimum.
Gespeichert in:
| Veröffentlicht in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Datum: | 2008 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2008
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/106511 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | A Property of Azarin's Limit Set of Subharmonic Functions / A. Chouigui, A.F. Grishin // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 3. — С. 346-357. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-106511 |
|---|---|
| record_format |
dspace |
| spelling |
Chouigui, A. Grishin, A.F. 2016-09-29T19:03:58Z 2016-09-29T19:03:58Z 2008 A Property of Azarin's Limit Set of Subharmonic Functions / A. Chouigui, A.F. Grishin // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 3. — С. 346-357. — Бібліогр.: 8 назв. — англ. 1812-9471 https://nasplib.isofts.kiev.ua/handle/123456789/106511 Let v(z) be a subharmonic function of order ρ > 0, and Fr(v) be the limit set in the sense of Azarin. Let z be fixed and I(z) = {u(z) : u is in Fr(v)}. We prove that I(z) is either a closed interval or a semiclosed interval which does not contain its infimum. The authors thank Prof. D. Drasin, Prof. S. Merenkov and the reviewer for the help in preparing this paper. en Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України Журнал математической физики, анализа, геометрии A Property of Azarin's Limit Set of Subharmonic Functions Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
A Property of Azarin's Limit Set of Subharmonic Functions |
| spellingShingle |
A Property of Azarin's Limit Set of Subharmonic Functions Chouigui, A. Grishin, A.F. |
| title_short |
A Property of Azarin's Limit Set of Subharmonic Functions |
| title_full |
A Property of Azarin's Limit Set of Subharmonic Functions |
| title_fullStr |
A Property of Azarin's Limit Set of Subharmonic Functions |
| title_full_unstemmed |
A Property of Azarin's Limit Set of Subharmonic Functions |
| title_sort |
property of azarin's limit set of subharmonic functions |
| author |
Chouigui, A. Grishin, A.F. |
| author_facet |
Chouigui, A. Grishin, A.F. |
| publishDate |
2008 |
| language |
English |
| container_title |
Журнал математической физики, анализа, геометрии |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| format |
Article |
| description |
Let v(z) be a subharmonic function of order ρ > 0, and Fr(v) be the limit set in the sense of Azarin. Let z be fixed and I(z) = {u(z) : u is in Fr(v)}. We prove that I(z) is either a closed interval or a semiclosed interval which does not contain its infimum.
|
| issn |
1812-9471 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/106511 |
| citation_txt |
A Property of Azarin's Limit Set of Subharmonic Functions / A. Chouigui, A.F. Grishin // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 3. — С. 346-357. — Бібліогр.: 8 назв. — англ. |
| work_keys_str_mv |
AT chouiguia apropertyofazarinslimitsetofsubharmonicfunctions AT grishinaf apropertyofazarinslimitsetofsubharmonicfunctions AT chouiguia propertyofazarinslimitsetofsubharmonicfunctions AT grishinaf propertyofazarinslimitsetofsubharmonicfunctions |
| first_indexed |
2025-12-07T18:45:38Z |
| last_indexed |
2025-12-07T18:45:38Z |
| _version_ |
1850876245701558272 |