Bifurcations of Solitary Waves

The paper provides a brief review of the recent results devoted to bifurcations of solitary waves. The main attention is paid to the universality of soliton behavior and stability of solitons while approaching supercritical bifurcations. Near the transition point from supercritical to subcritical bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Журнал математической физики, анализа, геометрии
Datum:2008
Hauptverfasser: Kuznetsov, E.A., Agafontsev, D.S., Dias, F.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2008
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/106521
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Bifurcations of Solitary Waves / E.A. Kuznetsov, D.S. Agafontsev, F. Dias // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 4. — С. 529-550. — Бібліогр.: 42 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The paper provides a brief review of the recent results devoted to bifurcations of solitary waves. The main attention is paid to the universality of soliton behavior and stability of solitons while approaching supercritical bifurcations. Near the transition point from supercritical to subcritical bifurcations, the stability of two families of solitons is studied in the frame-work of the generalized nonlinear Schrodinger equation. It is shown that one-dimensional solitons corresponding to the family of supercritical bifurcations are stable in the Lyapunov sense. The solitons from the subcritical bifurcation branch are unstable. The development of this instability results in the collapse of solitons. Near the time of collapse, the pulse amplitude and its width exhibit a self-similar behavior with a small asymmetry in the pulse tails due to self-steepening.
ISSN:1812-9471