From Laplacian Transport to Dirichlet-to-Neumann Gibbs) Semigroups

The paper gives a short account of some basic properties of Dirichlet-to-Neumann operators Λγ∂Ω including the corresponding semigroups motivated by the Laplacian transport in anisotropic media (γ ≠ I) and by elliptic systems with dynamical boundary conditions.

Збережено в:
Бібліографічні деталі
Опубліковано в: :Журнал математической физики, анализа, геометрии
Дата:2008
Автор: Zagrebnov, V.A.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2008
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/106522
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:From Laplacian Transport to Dirichlet-to-Neumann Gibbs) Semigroups / V.A. Zagrebnov // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 4. — С. 551-568. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-106522
record_format dspace
spelling Zagrebnov, V.A.
2016-09-29T20:26:09Z
2016-09-29T20:26:09Z
2008
From Laplacian Transport to Dirichlet-to-Neumann Gibbs) Semigroups / V.A. Zagrebnov // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 4. — С. 551-568. — Бібліогр.: 23 назв. — англ.
1812-9471
https://nasplib.isofts.kiev.ua/handle/123456789/106522
The paper gives a short account of some basic properties of Dirichlet-to-Neumann operators Λγ∂Ω including the corresponding semigroups motivated by the Laplacian transport in anisotropic media (γ ≠ I) and by elliptic systems with dynamical boundary conditions.
This paper is based on the lecture given by the author at the Lyapunov Memorial Conference, June 24-30, 2007 (Kharkiv National University, Ukraine). I would like to express my gratitude to the organizers and in particular to Prof. Leonid A. Pastur for invitation and for support. The conference talk, as well as the present account, is a part of the common project with Prof. Hassan Emamirad, whom I would like to thank for fruitful and pleasant collaboration.
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Журнал математической физики, анализа, геометрии
From Laplacian Transport to Dirichlet-to-Neumann Gibbs) Semigroups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title From Laplacian Transport to Dirichlet-to-Neumann Gibbs) Semigroups
spellingShingle From Laplacian Transport to Dirichlet-to-Neumann Gibbs) Semigroups
Zagrebnov, V.A.
title_short From Laplacian Transport to Dirichlet-to-Neumann Gibbs) Semigroups
title_full From Laplacian Transport to Dirichlet-to-Neumann Gibbs) Semigroups
title_fullStr From Laplacian Transport to Dirichlet-to-Neumann Gibbs) Semigroups
title_full_unstemmed From Laplacian Transport to Dirichlet-to-Neumann Gibbs) Semigroups
title_sort from laplacian transport to dirichlet-to-neumann gibbs) semigroups
author Zagrebnov, V.A.
author_facet Zagrebnov, V.A.
publishDate 2008
language English
container_title Журнал математической физики, анализа, геометрии
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
description The paper gives a short account of some basic properties of Dirichlet-to-Neumann operators Λγ∂Ω including the corresponding semigroups motivated by the Laplacian transport in anisotropic media (γ ≠ I) and by elliptic systems with dynamical boundary conditions.
issn 1812-9471
url https://nasplib.isofts.kiev.ua/handle/123456789/106522
citation_txt From Laplacian Transport to Dirichlet-to-Neumann Gibbs) Semigroups / V.A. Zagrebnov // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 4. — С. 551-568. — Бібліогр.: 23 назв. — англ.
work_keys_str_mv AT zagrebnovva fromlaplaciantransporttodirichlettoneumanngibbssemigroups
first_indexed 2025-12-07T18:52:37Z
last_indexed 2025-12-07T18:52:37Z
_version_ 1850876684706775040