From Laplacian Transport to Dirichlet-to-Neumann Gibbs) Semigroups
The paper gives a short account of some basic properties of Dirichlet-to-Neumann operators Λγ∂Ω including the corresponding semigroups motivated by the Laplacian transport in anisotropic media (γ ≠ I) and by elliptic systems with dynamical boundary conditions.
Saved in:
| Published in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Date: | 2008 |
| Main Author: | Zagrebnov, V.A. |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2008
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/106522 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | From Laplacian Transport to Dirichlet-to-Neumann Gibbs) Semigroups / V.A. Zagrebnov // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 4. — С. 551-568. — Бібліогр.: 23 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Dirichlet problem with Φ-Laplacian and mixed singularities
by: Rachůnková, I., et al.
Published: (2008) -
Weyl's spectral asymptotic formula for Dirichlet Kohn-Laplacian
by: Alkhutov, Yu.A., et al.
Published: (1999) -
Conformal Dirichlet-Neumann Maps and Poincaré-Einstein Manifolds
by: Gover, A.R.
Published: (2007) -
The Dirichlet Problem with Laplacian with Respect to a Measure in the Hilbert Space
by: Ju. V. Bogdanskij, et al.
Published: (2014) -
Dirichlet – Neumann problem for systems of hyperbolic equations with constant coefficients
by: B. Y. Ptashnyk, et al.
Published: (2014)