On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems

A perturbation of the Poisson equation by a biharmonic operator with a small multiplier ε is considered. The asymptotic behavior of the solution of the Dirichlet problem for this equation as ε → 0 is studied. The gradient of the solution is proved to converge to the gradient of the solution to Poiss...

Full description

Saved in:
Bibliographic Details
Published in:Журнал математической физики, анализа, геометрии
Date:2009
Main Authors: Anoshchenko, O., Lysenko, O., Khruslov, E.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2009
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/106536
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems / O. Anoshchenko, O. Lysenko, E. Khruslov // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 2. — С. 115-122. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-106536
record_format dspace
spelling Anoshchenko, O.
Lysenko, O.
Khruslov, E.
2016-09-30T06:58:38Z
2016-09-30T06:58:38Z
2009
On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems / O. Anoshchenko, O. Lysenko, E. Khruslov // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 2. — С. 115-122. — Бібліогр.: 6 назв. — англ.
1812-9471
https://nasplib.isofts.kiev.ua/handle/123456789/106536
A perturbation of the Poisson equation by a biharmonic operator with a small multiplier ε is considered. The asymptotic behavior of the solution of the Dirichlet problem for this equation as ε → 0 is studied. The gradient of the solution is proved to converge to the gradient of the solution to Poisson equation in L₁ (Ω) as ε → 0. The di erence of the gradients is also estimated.
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Журнал математической физики, анализа, геометрии
On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems
spellingShingle On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems
Anoshchenko, O.
Lysenko, O.
Khruslov, E.
title_short On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems
title_full On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems
title_fullStr On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems
title_full_unstemmed On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems
title_sort on convergence of solutions of singularly perturbed boundary-value problems
author Anoshchenko, O.
Lysenko, O.
Khruslov, E.
author_facet Anoshchenko, O.
Lysenko, O.
Khruslov, E.
publishDate 2009
language English
container_title Журнал математической физики, анализа, геометрии
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
description A perturbation of the Poisson equation by a biharmonic operator with a small multiplier ε is considered. The asymptotic behavior of the solution of the Dirichlet problem for this equation as ε → 0 is studied. The gradient of the solution is proved to converge to the gradient of the solution to Poisson equation in L₁ (Ω) as ε → 0. The di erence of the gradients is also estimated.
issn 1812-9471
url https://nasplib.isofts.kiev.ua/handle/123456789/106536
citation_txt On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems / O. Anoshchenko, O. Lysenko, E. Khruslov // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 2. — С. 115-122. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT anoshchenkoo onconvergenceofsolutionsofsingularlyperturbedboundaryvalueproblems
AT lysenkoo onconvergenceofsolutionsofsingularlyperturbedboundaryvalueproblems
AT khruslove onconvergenceofsolutionsofsingularlyperturbedboundaryvalueproblems
first_indexed 2025-12-07T16:51:26Z
last_indexed 2025-12-07T16:51:26Z
_version_ 1850869060830494720