On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems
A perturbation of the Poisson equation by a biharmonic operator with a small multiplier ε is considered. The asymptotic behavior of the solution of the Dirichlet problem for this equation as ε → 0 is studied. The gradient of the solution is proved to converge to the gradient of the solution to Poiss...
Saved in:
| Published in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Date: | 2009 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2009
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/106536 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems / O. Anoshchenko, O. Lysenko, E. Khruslov // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 2. — С. 115-122. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-106536 |
|---|---|
| record_format |
dspace |
| spelling |
Anoshchenko, O. Lysenko, O. Khruslov, E. 2016-09-30T06:58:38Z 2016-09-30T06:58:38Z 2009 On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems / O. Anoshchenko, O. Lysenko, E. Khruslov // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 2. — С. 115-122. — Бібліогр.: 6 назв. — англ. 1812-9471 https://nasplib.isofts.kiev.ua/handle/123456789/106536 A perturbation of the Poisson equation by a biharmonic operator with a small multiplier ε is considered. The asymptotic behavior of the solution of the Dirichlet problem for this equation as ε → 0 is studied. The gradient of the solution is proved to converge to the gradient of the solution to Poisson equation in L₁ (Ω) as ε → 0. The di erence of the gradients is also estimated. en Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України Журнал математической физики, анализа, геометрии On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems |
| spellingShingle |
On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems Anoshchenko, O. Lysenko, O. Khruslov, E. |
| title_short |
On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems |
| title_full |
On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems |
| title_fullStr |
On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems |
| title_full_unstemmed |
On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems |
| title_sort |
on convergence of solutions of singularly perturbed boundary-value problems |
| author |
Anoshchenko, O. Lysenko, O. Khruslov, E. |
| author_facet |
Anoshchenko, O. Lysenko, O. Khruslov, E. |
| publishDate |
2009 |
| language |
English |
| container_title |
Журнал математической физики, анализа, геометрии |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| format |
Article |
| description |
A perturbation of the Poisson equation by a biharmonic operator with a small multiplier ε is considered. The asymptotic behavior of the solution of the Dirichlet problem for this equation as ε → 0 is studied. The gradient of the solution is proved to converge to the gradient of the solution to Poisson equation in L₁ (Ω) as ε → 0. The di erence of the gradients is also estimated.
|
| issn |
1812-9471 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/106536 |
| citation_txt |
On Convergence of Solutions of Singularly Perturbed Boundary-Value Problems / O. Anoshchenko, O. Lysenko, E. Khruslov // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 2. — С. 115-122. — Бібліогр.: 6 назв. — англ. |
| work_keys_str_mv |
AT anoshchenkoo onconvergenceofsolutionsofsingularlyperturbedboundaryvalueproblems AT lysenkoo onconvergenceofsolutionsofsingularlyperturbedboundaryvalueproblems AT khruslove onconvergenceofsolutionsofsingularlyperturbedboundaryvalueproblems |
| first_indexed |
2025-12-07T16:51:26Z |
| last_indexed |
2025-12-07T16:51:26Z |
| _version_ |
1850869060830494720 |