The Hardy-Littlewood Theorem and the Operator of Harmonic Conjugate in Some Classes of Simply Connected Domains with Rectifiable Boundary

The analogue of known theorem Hardy-Littlewood about Lp-estimations of derivative analytical function through norm to the function, also are proved Lp-weight estimations the operator of harmonic conjugate in some classes of simply connected domains with rectifiable boundary for all 0 < p < +∞....

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Журнал математической физики, анализа, геометрии
Дата:2009
Автори: Tkachenko, N.M., Shamoyan, F.A.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2009
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/106540
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Hardy-Littlewood Theorem and the Operator of Harmonic Conjugate in Some Classes of Simply Connected Domains with Rectifiable Boundary / N.M. Tkachenko. F.A. Shamoyan // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 2. — С. 192-210. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-106540
record_format dspace
spelling Tkachenko, N.M.
Shamoyan, F.A.
2016-09-30T07:02:46Z
2016-09-30T07:02:46Z
2009
The Hardy-Littlewood Theorem and the Operator of Harmonic Conjugate in Some Classes of Simply Connected Domains with Rectifiable Boundary / N.M. Tkachenko. F.A. Shamoyan // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 2. — С. 192-210. — Бібліогр.: 13 назв. — англ.
1812-9471
https://nasplib.isofts.kiev.ua/handle/123456789/106540
The analogue of known theorem Hardy-Littlewood about Lp-estimations of derivative analytical function through norm to the function, also are proved Lp-weight estimations the operator of harmonic conjugate in some classes of simply connected domains with rectifiable boundary for all 0 < p < +∞.
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Журнал математической физики, анализа, геометрии
The Hardy-Littlewood Theorem and the Operator of Harmonic Conjugate in Some Classes of Simply Connected Domains with Rectifiable Boundary
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Hardy-Littlewood Theorem and the Operator of Harmonic Conjugate in Some Classes of Simply Connected Domains with Rectifiable Boundary
spellingShingle The Hardy-Littlewood Theorem and the Operator of Harmonic Conjugate in Some Classes of Simply Connected Domains with Rectifiable Boundary
Tkachenko, N.M.
Shamoyan, F.A.
title_short The Hardy-Littlewood Theorem and the Operator of Harmonic Conjugate in Some Classes of Simply Connected Domains with Rectifiable Boundary
title_full The Hardy-Littlewood Theorem and the Operator of Harmonic Conjugate in Some Classes of Simply Connected Domains with Rectifiable Boundary
title_fullStr The Hardy-Littlewood Theorem and the Operator of Harmonic Conjugate in Some Classes of Simply Connected Domains with Rectifiable Boundary
title_full_unstemmed The Hardy-Littlewood Theorem and the Operator of Harmonic Conjugate in Some Classes of Simply Connected Domains with Rectifiable Boundary
title_sort hardy-littlewood theorem and the operator of harmonic conjugate in some classes of simply connected domains with rectifiable boundary
author Tkachenko, N.M.
Shamoyan, F.A.
author_facet Tkachenko, N.M.
Shamoyan, F.A.
publishDate 2009
language English
container_title Журнал математической физики, анализа, геометрии
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
description The analogue of known theorem Hardy-Littlewood about Lp-estimations of derivative analytical function through norm to the function, also are proved Lp-weight estimations the operator of harmonic conjugate in some classes of simply connected domains with rectifiable boundary for all 0 < p < +∞.
issn 1812-9471
url https://nasplib.isofts.kiev.ua/handle/123456789/106540
citation_txt The Hardy-Littlewood Theorem and the Operator of Harmonic Conjugate in Some Classes of Simply Connected Domains with Rectifiable Boundary / N.M. Tkachenko. F.A. Shamoyan // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 2. — С. 192-210. — Бібліогр.: 13 назв. — англ.
work_keys_str_mv AT tkachenkonm thehardylittlewoodtheoremandtheoperatorofharmonicconjugateinsomeclassesofsimplyconnecteddomainswithrectifiableboundary
AT shamoyanfa thehardylittlewoodtheoremandtheoperatorofharmonicconjugateinsomeclassesofsimplyconnecteddomainswithrectifiableboundary
AT tkachenkonm hardylittlewoodtheoremandtheoperatorofharmonicconjugateinsomeclassesofsimplyconnecteddomainswithrectifiableboundary
AT shamoyanfa hardylittlewoodtheoremandtheoperatorofharmonicconjugateinsomeclassesofsimplyconnecteddomainswithrectifiableboundary
first_indexed 2025-12-07T20:27:52Z
last_indexed 2025-12-07T20:27:52Z
_version_ 1850882677811445760