Bulk Universality for Unitary Matrix Models
A proof of universality in the bulk of spectrum of unitary matrix models, assuming that the potential is globally C² and locally C³ function (see Theorem 1.2), is given. The proof is based on the determinant formulas for correlation functions in terms of polynomials orthogonal on the unit circle. Th...
Gespeichert in:
| Veröffentlicht in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Datum: | 2009 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2009
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/106543 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Bulk Universality for Unitary Matrix Models / M. Poplavskyi // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 3. — С. 245-274. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-106543 |
|---|---|
| record_format |
dspace |
| spelling |
Poplavskyi, M. 2016-09-30T07:29:38Z 2016-09-30T07:29:38Z 2009 Bulk Universality for Unitary Matrix Models / M. Poplavskyi // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 3. — С. 245-274. — Бібліогр.: 10 назв. — англ. 1812-9471 https://nasplib.isofts.kiev.ua/handle/123456789/106543 A proof of universality in the bulk of spectrum of unitary matrix models, assuming that the potential is globally C² and locally C³ function (see Theorem 1.2), is given. The proof is based on the determinant formulas for correlation functions in terms of polynomials orthogonal on the unit circle. The sin-kernel is obtained as a unique solution of a certain nonlinear integrodifferential equation without using asymptotics of orthogonal polynomials. The author is grateful to Dr. M.V. Shcherbina for the problem statement and fruitful discussions. en Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України Журнал математической физики, анализа, геометрии Bulk Universality for Unitary Matrix Models Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Bulk Universality for Unitary Matrix Models |
| spellingShingle |
Bulk Universality for Unitary Matrix Models Poplavskyi, M. |
| title_short |
Bulk Universality for Unitary Matrix Models |
| title_full |
Bulk Universality for Unitary Matrix Models |
| title_fullStr |
Bulk Universality for Unitary Matrix Models |
| title_full_unstemmed |
Bulk Universality for Unitary Matrix Models |
| title_sort |
bulk universality for unitary matrix models |
| author |
Poplavskyi, M. |
| author_facet |
Poplavskyi, M. |
| publishDate |
2009 |
| language |
English |
| container_title |
Журнал математической физики, анализа, геометрии |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| format |
Article |
| description |
A proof of universality in the bulk of spectrum of unitary matrix models, assuming that the potential is globally C² and locally C³ function (see Theorem 1.2), is given. The proof is based on the determinant formulas for correlation functions in terms of polynomials orthogonal on the unit circle. The sin-kernel is obtained as a unique solution of a certain nonlinear integrodifferential equation without using asymptotics of orthogonal polynomials.
|
| issn |
1812-9471 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/106543 |
| citation_txt |
Bulk Universality for Unitary Matrix Models / M. Poplavskyi // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 3. — С. 245-274. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT poplavskyim bulkuniversalityforunitarymatrixmodels |
| first_indexed |
2025-11-29T13:07:08Z |
| last_indexed |
2025-11-29T13:07:08Z |
| _version_ |
1850854932819738624 |