Planar Lebesgue Measure of Exceptional Set in Approximation of Subharmonic Functions
We consider the pointwise approximation of a subharmonic function having ¯nite order by the logarithm of the modulus of an function up to a bounded quantity. We prove an estimate from below of the planar Lebesgue measure of the exceptional Set in such approximation.
Збережено в:
| Опубліковано в: : | Журнал математической физики, анализа, геометрии |
|---|---|
| Дата: | 2009 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2009
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/106547 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Planar Lebesgue Measure of Exceptional Set in Approximation of Subharmonic Functions / M. Girnyk // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 4. — С. 347-358. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-106547 |
|---|---|
| record_format |
dspace |
| spelling |
Girnyk, M. 2016-09-30T08:21:30Z 2016-09-30T08:21:30Z 2009 Planar Lebesgue Measure of Exceptional Set in Approximation of Subharmonic Functions / M. Girnyk // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 4. — С. 347-358. — Бібліогр.: 13 назв. — англ. 1812-9471 https://nasplib.isofts.kiev.ua/handle/123456789/106547 We consider the pointwise approximation of a subharmonic function having ¯nite order by the logarithm of the modulus of an function up to a bounded quantity. We prove an estimate from below of the planar Lebesgue measure of the exceptional Set in such approximation. I would like to thank all the referees of the paper. en Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України Журнал математической физики, анализа, геометрии Planar Lebesgue Measure of Exceptional Set in Approximation of Subharmonic Functions Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Planar Lebesgue Measure of Exceptional Set in Approximation of Subharmonic Functions |
| spellingShingle |
Planar Lebesgue Measure of Exceptional Set in Approximation of Subharmonic Functions Girnyk, M. |
| title_short |
Planar Lebesgue Measure of Exceptional Set in Approximation of Subharmonic Functions |
| title_full |
Planar Lebesgue Measure of Exceptional Set in Approximation of Subharmonic Functions |
| title_fullStr |
Planar Lebesgue Measure of Exceptional Set in Approximation of Subharmonic Functions |
| title_full_unstemmed |
Planar Lebesgue Measure of Exceptional Set in Approximation of Subharmonic Functions |
| title_sort |
planar lebesgue measure of exceptional set in approximation of subharmonic functions |
| author |
Girnyk, M. |
| author_facet |
Girnyk, M. |
| publishDate |
2009 |
| language |
English |
| container_title |
Журнал математической физики, анализа, геометрии |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| format |
Article |
| description |
We consider the pointwise approximation of a subharmonic function having ¯nite order by the logarithm of the modulus of an function up to a bounded quantity. We prove an estimate from below of the planar Lebesgue measure of the exceptional Set in such approximation.
|
| issn |
1812-9471 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/106547 |
| citation_txt |
Planar Lebesgue Measure of Exceptional Set in Approximation of Subharmonic Functions / M. Girnyk // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 4. — С. 347-358. — Бібліогр.: 13 назв. — англ. |
| work_keys_str_mv |
AT girnykm planarlebesguemeasureofexceptionalsetinapproximationofsubharmonicfunctions |
| first_indexed |
2025-11-27T09:19:28Z |
| last_indexed |
2025-11-27T09:19:28Z |
| _version_ |
1850852077154074624 |