Order-Unit Spaces which are Banach Dual Spaces
Spaces of selfadjoint elements of a C*-algebra or a von Neumann algebra, and also JB- and JBW-algebras are examples of order-unit spaces. A von Neumann algebra and a JBW-algebra possess predual spaces, but, generally speaking, a JB-algebra and a C*-algebra don't have this property. In this work...
Збережено в:
| Опубліковано в: : | Журнал математической физики, анализа, геометрии |
|---|---|
| Дата: | 2006 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2006
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/106587 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Order-Unit Spaces which are Banach Dual Spaces / M.A. Berdikulov // Журнал математической физики, анализа, геометрии. — 2006. — Т. 2, № 2. — С. 130-137. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-106587 |
|---|---|
| record_format |
dspace |
| spelling |
Berdikulov, M.A. 2016-09-30T20:35:22Z 2016-09-30T20:35:22Z 2006 Order-Unit Spaces which are Banach Dual Spaces / M.A. Berdikulov // Журнал математической физики, анализа, геометрии. — 2006. — Т. 2, № 2. — С. 130-137. — Бібліогр.: 11 назв. — англ. 1812-9471 https://nasplib.isofts.kiev.ua/handle/123456789/106587 Spaces of selfadjoint elements of a C*-algebra or a von Neumann algebra, and also JB- and JBW-algebras are examples of order-unit spaces. A von Neumann algebra and a JBW-algebra possess predual spaces, but, generally speaking, a JB-algebra and a C*-algebra don't have this property. In this work, conditions are found for an order-unit space to possess a predual space. Moreover, a condition is obtained characterizing JBW-algebras among order-unit spaces having a predual space. en Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України Журнал математической физики, анализа, геометрии Order-Unit Spaces which are Banach Dual Spaces Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Order-Unit Spaces which are Banach Dual Spaces |
| spellingShingle |
Order-Unit Spaces which are Banach Dual Spaces Berdikulov, M.A. |
| title_short |
Order-Unit Spaces which are Banach Dual Spaces |
| title_full |
Order-Unit Spaces which are Banach Dual Spaces |
| title_fullStr |
Order-Unit Spaces which are Banach Dual Spaces |
| title_full_unstemmed |
Order-Unit Spaces which are Banach Dual Spaces |
| title_sort |
order-unit spaces which are banach dual spaces |
| author |
Berdikulov, M.A. |
| author_facet |
Berdikulov, M.A. |
| publishDate |
2006 |
| language |
English |
| container_title |
Журнал математической физики, анализа, геометрии |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| format |
Article |
| description |
Spaces of selfadjoint elements of a C*-algebra or a von Neumann algebra, and also JB- and JBW-algebras are examples of order-unit spaces. A von Neumann algebra and a JBW-algebra possess predual spaces, but, generally speaking, a JB-algebra and a C*-algebra don't have this property. In this work, conditions are found for an order-unit space to possess a predual space. Moreover, a condition is obtained characterizing JBW-algebras among order-unit spaces having a predual space.
|
| issn |
1812-9471 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/106587 |
| citation_txt |
Order-Unit Spaces which are Banach Dual Spaces / M.A. Berdikulov // Журнал математической физики, анализа, геометрии. — 2006. — Т. 2, № 2. — С. 130-137. — Бібліогр.: 11 назв. — англ. |
| work_keys_str_mv |
AT berdikulovma orderunitspaceswhicharebanachdualspaces |
| first_indexed |
2025-12-07T15:53:25Z |
| last_indexed |
2025-12-07T15:53:25Z |
| _version_ |
1850865411345612800 |