Meromorphic Traveling Wave Solutions of the Kuramoto-Sivashinsky Equation

We determine all cases when there exists a meromorphic solution of the ODE vw''' + bw'' + μw' + w²/2+ A = 0. This equation describes traveling waves solutions of the Kuramoto-Sivashinsky equation. It turns out that there are no other meromorphic solutions besides those...

Full description

Saved in:
Bibliographic Details
Published in:Журнал математической физики, анализа, геометрии
Date:2006
Main Author: Eremenko, A.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2006
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/106619
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Meromorphic Traveling Wave Solutions of the Kuramoto-Sivashinsky Equation / A. Eremenko // Журнал математической физики, анализа, геометрии. — 2006. — Т. 2, № 3. — С. 278-286. — Бібліогр.: 19 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We determine all cases when there exists a meromorphic solution of the ODE vw''' + bw'' + μw' + w²/2+ A = 0. This equation describes traveling waves solutions of the Kuramoto-Sivashinsky equation. It turns out that there are no other meromorphic solutions besides those explicit solutions found by Kuramoto and Kudryashov. The general method used in this paper, based on Nevanlinna theory, is applicable to nding all meromorphic solutions of a wide class of nonlinear ODE.
ISSN:1812-9471