On the Characteristic Operators and Projections and on the Solutions of Weyl Type of Dissipative and Accumulative Operator Systems. II. Abstract Theory
Special maximal semi-definite subspaces (maximal dissipative and accumulative relations) are considered. Particular cases of those arise in studying boundary problems for systems mentioned in the title. We provide a description of such subspaces and list their properties. A criterion is found that c...
Збережено в:
| Опубліковано в: : | Журнал математической физики, анализа, геометрии |
|---|---|
| Дата: | 2006 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2006
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/106621 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On the Characteristic Operators and Projections and on the Solutions of Weyl Type of Dissipative and Accumulative Operator Systems. II. Abstract Theory / V.I. Khrabustovsky // Журнал математической физики, анализа, геометрии. — 2006. — Т. 2, № 3. — С. 299-317. — Бібліогр.: 35 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Special maximal semi-definite subspaces (maximal dissipative and accumulative relations) are considered. Particular cases of those arise in studying boundary problems for systems mentioned in the title. We provide a description of such subspaces and list their properties. A criterion is found that condition of semi-definiteness of sum of indefinite quadratic forms reduces to semi-definiteness of each of the summand forms, i.e it is separated. In the case when the forms depend on a parameter λ (e.g., a spectral parameter) within a domain Λ is in C, a condition is found under which separation of the semi-definiteness property at a single λ implies its separation for all λ.
|
|---|---|
| ISSN: | 1812-9471 |