Homogenization of the Neumann-Fourier Problem in a Thick Two-Level Junction of Type 3:2:1

We consider a mixed boundary-value problem for the Poisson equation in a two-level junction " which is the union of a domain Ω₀ and a large number of thin cylinders with cross-section of order O(ε²): The thin cylinders are divided into two levels depending on their lengths. In addition, the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Журнал математической физики, анализа, геометрии
Datum:2006
Hauptverfasser: Mel'nyk, T.A., Vashchuk, P.S.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2006
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/106622
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Homogenization of the Neumann-Fourier Problem in a Thick Two-Level Junction of Type 3:2:1 / T.A. Mel`nyk, P.S. Vashchuk // Журнал математической физики, анализа, геометрии. — 2006. — Т. 2, № 3. — С. 318-337. — Бібліогр.: 37 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-106622
record_format dspace
spelling Mel'nyk, T.A.
Vashchuk, P.S.
2016-10-01T13:33:16Z
2016-10-01T13:33:16Z
2006
Homogenization of the Neumann-Fourier Problem in a Thick Two-Level Junction of Type 3:2:1 / T.A. Mel`nyk, P.S. Vashchuk // Журнал математической физики, анализа, геометрии. — 2006. — Т. 2, № 3. — С. 318-337. — Бібліогр.: 37 назв. — англ.
1812-9471
https://nasplib.isofts.kiev.ua/handle/123456789/106622
We consider a mixed boundary-value problem for the Poisson equation in a two-level junction " which is the union of a domain Ω₀ and a large number of thin cylinders with cross-section of order O(ε²): The thin cylinders are divided into two levels depending on their lengths. In addition, the thin cylinders from each level are ε-periodically alternated. The nonuniform Neumann conditions are given on the lateral sides of the thin cylinders from the rst level and the uniform Fourier conditions are given on the lateral sides of the thin cylinders from the second level. We study the asymptotic behavior of the solution as ε → 0: The convergence theorem and the convergence of the energy integral are proved.
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Журнал математической физики, анализа, геометрии
Homogenization of the Neumann-Fourier Problem in a Thick Two-Level Junction of Type 3:2:1
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Homogenization of the Neumann-Fourier Problem in a Thick Two-Level Junction of Type 3:2:1
spellingShingle Homogenization of the Neumann-Fourier Problem in a Thick Two-Level Junction of Type 3:2:1
Mel'nyk, T.A.
Vashchuk, P.S.
title_short Homogenization of the Neumann-Fourier Problem in a Thick Two-Level Junction of Type 3:2:1
title_full Homogenization of the Neumann-Fourier Problem in a Thick Two-Level Junction of Type 3:2:1
title_fullStr Homogenization of the Neumann-Fourier Problem in a Thick Two-Level Junction of Type 3:2:1
title_full_unstemmed Homogenization of the Neumann-Fourier Problem in a Thick Two-Level Junction of Type 3:2:1
title_sort homogenization of the neumann-fourier problem in a thick two-level junction of type 3:2:1
author Mel'nyk, T.A.
Vashchuk, P.S.
author_facet Mel'nyk, T.A.
Vashchuk, P.S.
publishDate 2006
language English
container_title Журнал математической физики, анализа, геометрии
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
description We consider a mixed boundary-value problem for the Poisson equation in a two-level junction " which is the union of a domain Ω₀ and a large number of thin cylinders with cross-section of order O(ε²): The thin cylinders are divided into two levels depending on their lengths. In addition, the thin cylinders from each level are ε-periodically alternated. The nonuniform Neumann conditions are given on the lateral sides of the thin cylinders from the rst level and the uniform Fourier conditions are given on the lateral sides of the thin cylinders from the second level. We study the asymptotic behavior of the solution as ε → 0: The convergence theorem and the convergence of the energy integral are proved.
issn 1812-9471
url https://nasplib.isofts.kiev.ua/handle/123456789/106622
citation_txt Homogenization of the Neumann-Fourier Problem in a Thick Two-Level Junction of Type 3:2:1 / T.A. Mel`nyk, P.S. Vashchuk // Журнал математической физики, анализа, геометрии. — 2006. — Т. 2, № 3. — С. 318-337. — Бібліогр.: 37 назв. — англ.
work_keys_str_mv AT melnykta homogenizationoftheneumannfourierprobleminathicktwoleveljunctionoftype321
AT vashchukps homogenizationoftheneumannfourierprobleminathicktwoleveljunctionoftype321
first_indexed 2025-12-01T01:51:34Z
last_indexed 2025-12-01T01:51:34Z
_version_ 1850859015424180224