On the Solution of the Monge-Ampere Equation ZxxZyy - Z²xy= f (x, y) with Quadratic Right Side
For the Monge{Ampere equation ZxxZyy-Z²xy = b₂₀x²+b₁₁xy+b₀₂y²+b₀₀ we consider the question on the existence of a solution Z(x, y) in the class of polynomials such that Z = Z(x, y) is a graph of a convex surface. If Z is a polynomial of odd degree, then the solution does not exist. If Z is a polynomi...
Gespeichert in:
| Veröffentlicht in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Datum: | 2011 |
| Hauptverfasser: | , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2011
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/106681 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On the Solution of the Monge-Ampere Equation ZxxZyy - Z²xy= f (x, y) with Quadratic Right Side / Yu. Aminov, K. Arslan, B. Bulca, C. Murathan, B. (Kilic) Bayram, G. Öztürk // Журнал математической физики, анализа, геометрии. — 2011. — Т. 7, № 3. — С. 203-211. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-106681 |
|---|---|
| record_format |
dspace |
| spelling |
Aminov, Yu. Arslan, K. Bulca, B. Murathan, C. Bayram, B. (Kilic) Öztürk, G. 2016-10-02T19:28:53Z 2016-10-02T19:28:53Z 2011 On the Solution of the Monge-Ampere Equation ZxxZyy - Z²xy= f (x, y) with Quadratic Right Side / Yu. Aminov, K. Arslan, B. Bulca, C. Murathan, B. (Kilic) Bayram, G. Öztürk // Журнал математической физики, анализа, геометрии. — 2011. — Т. 7, № 3. — С. 203-211. — Бібліогр.: 5 назв. — англ. 1812-9471 https://nasplib.isofts.kiev.ua/handle/123456789/106681 For the Monge{Ampere equation ZxxZyy-Z²xy = b₂₀x²+b₁₁xy+b₀₂y²+b₀₀ we consider the question on the existence of a solution Z(x, y) in the class of polynomials such that Z = Z(x, y) is a graph of a convex surface. If Z is a polynomial of odd degree, then the solution does not exist. If Z is a polynomial of 4-th degree and 4b₂₀b₀₂ - b₁₁² > 0, then the solution also does not exist. If 4b₂₀b₀₂ - b₁₁² = 0, then we have solutions. en Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України Журнал математической физики, анализа, геометрии On the Solution of the Monge-Ampere Equation ZxxZyy - Z²xy= f (x, y) with Quadratic Right Side Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On the Solution of the Monge-Ampere Equation ZxxZyy - Z²xy= f (x, y) with Quadratic Right Side |
| spellingShingle |
On the Solution of the Monge-Ampere Equation ZxxZyy - Z²xy= f (x, y) with Quadratic Right Side Aminov, Yu. Arslan, K. Bulca, B. Murathan, C. Bayram, B. (Kilic) Öztürk, G. |
| title_short |
On the Solution of the Monge-Ampere Equation ZxxZyy - Z²xy= f (x, y) with Quadratic Right Side |
| title_full |
On the Solution of the Monge-Ampere Equation ZxxZyy - Z²xy= f (x, y) with Quadratic Right Side |
| title_fullStr |
On the Solution of the Monge-Ampere Equation ZxxZyy - Z²xy= f (x, y) with Quadratic Right Side |
| title_full_unstemmed |
On the Solution of the Monge-Ampere Equation ZxxZyy - Z²xy= f (x, y) with Quadratic Right Side |
| title_sort |
on the solution of the monge-ampere equation zxxzyy - z²xy= f (x, y) with quadratic right side |
| author |
Aminov, Yu. Arslan, K. Bulca, B. Murathan, C. Bayram, B. (Kilic) Öztürk, G. |
| author_facet |
Aminov, Yu. Arslan, K. Bulca, B. Murathan, C. Bayram, B. (Kilic) Öztürk, G. |
| publishDate |
2011 |
| language |
English |
| container_title |
Журнал математической физики, анализа, геометрии |
| publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
| format |
Article |
| description |
For the Monge{Ampere equation ZxxZyy-Z²xy = b₂₀x²+b₁₁xy+b₀₂y²+b₀₀ we consider the question on the existence of a solution Z(x, y) in the class of polynomials such that Z = Z(x, y) is a graph of a convex surface. If Z is a polynomial of odd degree, then the solution does not exist. If Z is a polynomial of 4-th degree and 4b₂₀b₀₂ - b₁₁² > 0, then the solution also does not exist. If 4b₂₀b₀₂ - b₁₁² = 0, then we have solutions.
|
| issn |
1812-9471 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/106681 |
| citation_txt |
On the Solution of the Monge-Ampere Equation ZxxZyy - Z²xy= f (x, y) with Quadratic Right Side / Yu. Aminov, K. Arslan, B. Bulca, C. Murathan, B. (Kilic) Bayram, G. Öztürk // Журнал математической физики, анализа, геометрии. — 2011. — Т. 7, № 3. — С. 203-211. — Бібліогр.: 5 назв. — англ. |
| work_keys_str_mv |
AT aminovyu onthesolutionofthemongeampereequationzxxzyyz2xyfxywithquadraticrightside AT arslank onthesolutionofthemongeampereequationzxxzyyz2xyfxywithquadraticrightside AT bulcab onthesolutionofthemongeampereequationzxxzyyz2xyfxywithquadraticrightside AT murathanc onthesolutionofthemongeampereequationzxxzyyz2xyfxywithquadraticrightside AT bayrambkilic onthesolutionofthemongeampereequationzxxzyyz2xyfxywithquadraticrightside AT ozturkg onthesolutionofthemongeampereequationzxxzyyz2xyfxywithquadraticrightside |
| first_indexed |
2025-12-07T19:27:12Z |
| last_indexed |
2025-12-07T19:27:12Z |
| _version_ |
1850878860728467456 |