Infinite Dimensional Spaces and Cartesian Closedness

Infinite dimensional spaces frequently appear in physics; there are several approaches to obtain a good categorical framework for this type of space, and cartesian closedness of some category, embedding smooth manifolds, is one of the most requested condition. In the first part of the paper, we star...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Журнал математической физики, анализа, геометрии
Datum:2011
1. Verfasser: Giordano, P.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2011
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/106684
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Infinite Dimensional Spaces and Cartesian Closedness / P. Giordano // Журнал математической физики, анализа, геометрии. — 2011. — Т. 7, № 3. — С. 225-284. — Бібліогр.: 89 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Infinite dimensional spaces frequently appear in physics; there are several approaches to obtain a good categorical framework for this type of space, and cartesian closedness of some category, embedding smooth manifolds, is one of the most requested condition. In the first part of the paper, we start from the failures presented by the classical Banach manifolds approach and we will review the most studied approaches focusing on cartesian closedness: the convenient setting, diffeology and synthetic differential geometry. In the second part of the paper, we present a general settings to obtain cartesian closedness. Using this approach, we can also easily obtain the possibility to extend manifolds using nilpotent infinitesimal points, without any need to have a background in formal logic.
ISSN:1812-9471