Infinite Dimensional Spaces and Cartesian Closedness

Infinite dimensional spaces frequently appear in physics; there are several approaches to obtain a good categorical framework for this type of space, and cartesian closedness of some category, embedding smooth manifolds, is one of the most requested condition. In the first part of the paper, we star...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Журнал математической физики, анализа, геометрии
Datum:2011
1. Verfasser: Giordano, P.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2011
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/106684
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Infinite Dimensional Spaces and Cartesian Closedness / P. Giordano // Журнал математической физики, анализа, геометрии. — 2011. — Т. 7, № 3. — С. 225-284. — Бібліогр.: 89 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-106684
record_format dspace
spelling Giordano, P.
2016-10-02T19:31:37Z
2016-10-02T19:31:37Z
2011
Infinite Dimensional Spaces and Cartesian Closedness / P. Giordano // Журнал математической физики, анализа, геометрии. — 2011. — Т. 7, № 3. — С. 225-284. — Бібліогр.: 89 назв. — англ.
1812-9471
https://nasplib.isofts.kiev.ua/handle/123456789/106684
Infinite dimensional spaces frequently appear in physics; there are several approaches to obtain a good categorical framework for this type of space, and cartesian closedness of some category, embedding smooth manifolds, is one of the most requested condition. In the first part of the paper, we start from the failures presented by the classical Banach manifolds approach and we will review the most studied approaches focusing on cartesian closedness: the convenient setting, diffeology and synthetic differential geometry. In the second part of the paper, we present a general settings to obtain cartesian closedness. Using this approach, we can also easily obtain the possibility to extend manifolds using nilpotent infinitesimal points, without any need to have a background in formal logic.
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Журнал математической физики, анализа, геометрии
Infinite Dimensional Spaces and Cartesian Closedness
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Infinite Dimensional Spaces and Cartesian Closedness
spellingShingle Infinite Dimensional Spaces and Cartesian Closedness
Giordano, P.
title_short Infinite Dimensional Spaces and Cartesian Closedness
title_full Infinite Dimensional Spaces and Cartesian Closedness
title_fullStr Infinite Dimensional Spaces and Cartesian Closedness
title_full_unstemmed Infinite Dimensional Spaces and Cartesian Closedness
title_sort infinite dimensional spaces and cartesian closedness
author Giordano, P.
author_facet Giordano, P.
publishDate 2011
language English
container_title Журнал математической физики, анализа, геометрии
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
description Infinite dimensional spaces frequently appear in physics; there are several approaches to obtain a good categorical framework for this type of space, and cartesian closedness of some category, embedding smooth manifolds, is one of the most requested condition. In the first part of the paper, we start from the failures presented by the classical Banach manifolds approach and we will review the most studied approaches focusing on cartesian closedness: the convenient setting, diffeology and synthetic differential geometry. In the second part of the paper, we present a general settings to obtain cartesian closedness. Using this approach, we can also easily obtain the possibility to extend manifolds using nilpotent infinitesimal points, without any need to have a background in formal logic.
issn 1812-9471
url https://nasplib.isofts.kiev.ua/handle/123456789/106684
citation_txt Infinite Dimensional Spaces and Cartesian Closedness / P. Giordano // Журнал математической физики, анализа, геометрии. — 2011. — Т. 7, № 3. — С. 225-284. — Бібліогр.: 89 назв. — англ.
work_keys_str_mv AT giordanop infinitedimensionalspacesandcartesianclosedness
first_indexed 2025-12-07T19:26:31Z
last_indexed 2025-12-07T19:26:31Z
_version_ 1850878817831223296