Elementary Solutions of the Bernstein Problem on Two Intervals
First we note that the best polynomial approximation to jxj on the set, which consists of an interval on the positive half-axis and a point on the negative half-axis, can be given by means of the classical Chebyshev polynomials. Then we explore the cases when a solution of the related problem on two...
Gespeichert in:
| Veröffentlicht in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Datum: | 2012 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2012
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/106708 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Elementary Solutions of the Bernstein Problem on Two Intervals / F. Pausinger // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 1. — С. 63-78. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | First we note that the best polynomial approximation to jxj on the set, which consists of an interval on the positive half-axis and a point on the negative half-axis, can be given by means of the classical Chebyshev polynomials. Then we explore the cases when a solution of the related problem on two intervals can be given in elementary functions.
Вначале показываем, что решение задачи о наилучшей полиномиальной аппроксимации функции |x| на множестве, состоящем из интервала на положительной полуоси и точки на отрицательной полуоси, может быть выражено через классические полиномы Чебышева. Далее мы изучаем вопрос о том, в каких случаях решение аналогичной задачи на объединении двух интервалов может быть выражено в сходных терминах.
|
|---|---|
| ISSN: | 1812-9471 |