Elementary Solutions of the Bernstein Problem on Two Intervals

First we note that the best polynomial approximation to jxj on the set, which consists of an interval on the positive half-axis and a point on the negative half-axis, can be given by means of the classical Chebyshev polynomials. Then we explore the cases when a solution of the related problem on two...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Журнал математической физики, анализа, геометрии
Дата:2012
Автор: Pausinger, F.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2012
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/106708
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Elementary Solutions of the Bernstein Problem on Two Intervals / F. Pausinger // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 1. — С. 63-78. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:First we note that the best polynomial approximation to jxj on the set, which consists of an interval on the positive half-axis and a point on the negative half-axis, can be given by means of the classical Chebyshev polynomials. Then we explore the cases when a solution of the related problem on two intervals can be given in elementary functions. Вначале показываем, что решение задачи о наилучшей полиномиальной аппроксимации функции |x| на множестве, состоящем из интервала на положительной полуоси и точки на отрицательной полуоси, может быть выражено через классические полиномы Чебышева. Далее мы изучаем вопрос о том, в каких случаях решение аналогичной задачи на объединении двух интервалов может быть выражено в сходных терминах.
ISSN:1812-9471