Good Measures on Locally Compact Cantor Sets
We study the set M(X) of full non-atomic Borel measures μ on a non-compact locally compact Cantor set X. The set Mμ = {x is in X : for any compact open set U (x is in U) we have μ(U) = ∞} is called defective. μ is non-defective if μ(Mμ) = 0. The set M⁰(X) is subset of M(X) consists of probability a...
Збережено в:
| Опубліковано в: : | Журнал математической физики, анализа, геометрии |
|---|---|
| Дата: | 2012 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2012
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/106723 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Good Measures on Locally Compact Cantor Sets/ O.M. Karpel // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 3. — С. 260-279. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineБудьте першим, хто залишить коментар!