Complexity of Initial Value Problems in Banach Spaces

We study the complexity of initial value problems for Banach space valued ordinary differential equations in the randomized setting. The right- hand side is assumed to be r-smooth, the r-th derivatives being ϱ-Hölder continuous. We develop and analyze a randomized algorithm. Furthermore, we prove lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Журнал математической физики, анализа, геометрии
Datum:2013
1. Verfasser: Heinrich, S.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2013
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/106738
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Complexity of Initial Value Problems in Banach Spaces / S. Heinrich // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 1. — С. 73-101. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-106738
record_format dspace
spelling Heinrich, S.
2016-10-03T18:12:06Z
2016-10-03T18:12:06Z
2013
Complexity of Initial Value Problems in Banach Spaces / S. Heinrich // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 1. — С. 73-101. — Бібліогр.: 18 назв. — англ.
1812-9471
https://nasplib.isofts.kiev.ua/handle/123456789/106738
We study the complexity of initial value problems for Banach space valued ordinary differential equations in the randomized setting. The right- hand side is assumed to be r-smooth, the r-th derivatives being ϱ-Hölder continuous. We develop and analyze a randomized algorithm. Furthermore, we prove lower bounds and thus obtain complexity estimates. They are related to the type of the underlying Banach space. We also consider the deterministic setting. The results extend previous ones for the finite dimensional case from [2, 9, 10].
Изучается сложность задачи Коши для банаховозначных обыкновенных дифференциальных уравнений с рандомизированными начальными условиями. Правая часть предполагается r-гладкой, а r-е производные ϱ-гельдеровыми. Разрабатывается и анализируется рандомизированный алгоритм. Кроме того, доказываются оценки снизу и, таким образом, получаются оценки сложности. Они связаны с типом основного банахова пространства. Также рассматриваются детерминистические начальные данные. Эти результаты обобщают предыдущие, полученные для конечномерного случая [2, 9, 10].
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Журнал математической физики, анализа, геометрии
Complexity of Initial Value Problems in Banach Spaces
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Complexity of Initial Value Problems in Banach Spaces
spellingShingle Complexity of Initial Value Problems in Banach Spaces
Heinrich, S.
title_short Complexity of Initial Value Problems in Banach Spaces
title_full Complexity of Initial Value Problems in Banach Spaces
title_fullStr Complexity of Initial Value Problems in Banach Spaces
title_full_unstemmed Complexity of Initial Value Problems in Banach Spaces
title_sort complexity of initial value problems in banach spaces
author Heinrich, S.
author_facet Heinrich, S.
publishDate 2013
language English
container_title Журнал математической физики, анализа, геометрии
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
description We study the complexity of initial value problems for Banach space valued ordinary differential equations in the randomized setting. The right- hand side is assumed to be r-smooth, the r-th derivatives being ϱ-Hölder continuous. We develop and analyze a randomized algorithm. Furthermore, we prove lower bounds and thus obtain complexity estimates. They are related to the type of the underlying Banach space. We also consider the deterministic setting. The results extend previous ones for the finite dimensional case from [2, 9, 10]. Изучается сложность задачи Коши для банаховозначных обыкновенных дифференциальных уравнений с рандомизированными начальными условиями. Правая часть предполагается r-гладкой, а r-е производные ϱ-гельдеровыми. Разрабатывается и анализируется рандомизированный алгоритм. Кроме того, доказываются оценки снизу и, таким образом, получаются оценки сложности. Они связаны с типом основного банахова пространства. Также рассматриваются детерминистические начальные данные. Эти результаты обобщают предыдущие, полученные для конечномерного случая [2, 9, 10].
issn 1812-9471
url https://nasplib.isofts.kiev.ua/handle/123456789/106738
citation_txt Complexity of Initial Value Problems in Banach Spaces / S. Heinrich // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 1. — С. 73-101. — Бібліогр.: 18 назв. — англ.
work_keys_str_mv AT heinrichs complexityofinitialvalueproblemsinbanachspaces
first_indexed 2025-11-30T14:38:47Z
last_indexed 2025-11-30T14:38:47Z
_version_ 1850857942147923968