On Isomorphism Between Certain Group Algebras on the Heisenberg Group
Let IHn denote the (2n + 1)-dimensional Heisenberg group and let K be a compact subgroup of Aut(IHn); the group of automorphisms of IHn. We prove that the algebra of radial functions on IHn and the algebra of spherical functions arising from the Gelfand pairs of the form (K, IHn) are algebraically i...
Saved in:
| Published in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Date: | 2013 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2013
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/106743 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On Isomorphism Between Certain Group Algebras on the Heisenberg Group / M.E. Egwe, U.N. Bassey // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 2. — С. 150-164. — Бібліогр.: 20 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Let IHn denote the (2n + 1)-dimensional Heisenberg group and let K be a compact subgroup of Aut(IHn); the group of automorphisms of IHn. We prove that the algebra of radial functions on IHn and the algebra of spherical functions arising from the Gelfand pairs of the form (K, IHn) are algebraically isomorphic.
Пусть IHn обозначает (2n+1)-мерную группу Гейзенберга, а K - компактную подгруппу Aut(IHn), группу автоморфизмов IHn. Доказано, что алгебра радиальных функций на IHn и алгебра сферических функций, возникающих из пар Гельфанда вида (K, IHn), являются алгебраически изоморфными.
|
|---|---|
| ISSN: | 1812-9471 |