Local Minimizers of the Magnetic Ginzburg-Landau Functional with S¹-valued Order Parameter on the Boundary
It was shown in [L. Berlyand and V. Rybalko, Solution with Vortices of a Semi-Stiff Boundary Value Problem for the Ginzburg-Landau Equation, J. Eur. Math. Soc. 12 (2010), 1497{1531] that in doubly connected domains there exist local minimizers of the simplified Ginzburg-Landau functional with modulu...
Saved in:
| Published in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Date: | 2014 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2014
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/106788 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Local Minimizers of the Magnetic Ginzburg-Landau Functional with S¹-valued Order Parameter on the Boundary / V. Rybalko // Журнал математической физики, анализа, геометрии. — 2014. — Т. 10, № 1. — С. 134-151. — Бібліогр.: 23 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | It was shown in [L. Berlyand and V. Rybalko, Solution with Vortices of a Semi-Stiff Boundary Value Problem for the Ginzburg-Landau Equation, J. Eur. Math. Soc. 12 (2010), 1497{1531] that in doubly connected domains there exist local minimizers of the simplified Ginzburg-Landau functional with modulus one and prescribed degrees on the boundary, unlike global minimizers that typically do not exist. We generalize the results and techniques of the aforementioned paper to the case of the magnetic Ginzburg-Landau functional.
В работе [L. Berlyand and V. Rybalko, Solution with Vortices of a Semi-Stiff Boundary Value Problem for the Ginzburg-Landau Equation, J. Eur. Math. Soc. 12 (2010), 1497-1531] было показано, что в двусвязных областях существуют локальные минимизанты упрощенного функционала Гинзбурга-Ландау, имеющие модуль один и заданные степени отображения на границе, в отличие от глобальных минимизантов, которые обычно не существуют. Результаты и методы упомянутой выше статьи обобщаются на случай "магнитного" функционала Гинзбурга-Ландау.
|
|---|---|
| ISSN: | 1812-9471 |