Generalized Duality, Hamiltonian Formalism and New Brackets
It is shown that any singular Lagrangian theory: 1) can be formulated without the use of constraints by introducing a Clairaut-type version of the Hamiltonian formalism; 2) leads to a special kind of nonabelian gauge theory which is similar to the Poisson gauge theory; 3) can be treated as the many-...
Saved in:
| Published in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Date: | 2014 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2014
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/106791 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Generalized Duality, Hamiltonian Formalism and New Brackets / S. Duplij // Журнал математической физики, анализа, геометрии. — 2014. — Т. 10, № 2. — С. 189-220. — Бібліогр.: 76 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | It is shown that any singular Lagrangian theory: 1) can be formulated without the use of constraints by introducing a Clairaut-type version of the Hamiltonian formalism; 2) leads to a special kind of nonabelian gauge theory which is similar to the Poisson gauge theory; 3) can be treated as the many-time classical dynamics. A generalization of the Legendre transform to the zero Hessian case is done by using the mixed(envelope/general) solution of the multidimensional Clairaut equation. The equations of motion are written in the Hamilton-like form by introducing new antisymmetric brackets. It is shown that any classical degenerate Lagrangian theory is equivalent to the many-time classical dynamics. Finally, the relation between the presented formalism and the Dirac approach to constrained systems is given.
Показано, что любая сингулярная лагранжева теория: 1) может быть сформулирована без привлечения связей с помощью Клеро-версии гамильтонового формализма; 2) приводит к специальному виду неабелевой калибровочной теории, которая подобна пуассоновой калибровочной теории; 3) может быть сформулирована как многовременная классическая динамика. Обобщение преобразования Лежандра на случай нулевого гессиана проведено с использованием смешанного (обертывающего/общего) решения многомерного уравнения Клеро. Уравнения движения записываются в гамильтоновой форме с помощью введения новых антисимметричных скобок. Отмечено, что любая классическая система с вырожденным лагранжианом эквивалентна многовременной классической динамике. В заключение приведено взаимоотношение представленного формализма и теории связей Дирака.
|
|---|---|
| ISSN: | 1812-9471 |