Eigenvalue Distribution of a Large Weighted Bipartite Random Graph
We study an eigenvalue distribution of the adjacency matrix A^(N,p,a) of the weighted random bipartite graph Г = ГN,p. We assume that the graph has N vertices, the ratio of parts is α(1-α), and the average number of the edges attached to one vertex is ap or (1-a)p. To every edge of the graph eij, w...
Gespeichert in:
| Veröffentlicht in: | Журнал математической физики, анализа, геометрии |
|---|---|
| Datum: | 2014 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2014
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/106794 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Eigenvalue Distribution of a Large Weighted Bipartite Random Graph / V. Vengerovsky // Журнал математической физики, анализа, геометрии. — 2014. — Т. 10, № 2. — С. 240-255. — Бібліогр.: 19 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | We study an eigenvalue distribution of the adjacency matrix A^(N,p,a) of the weighted random bipartite graph Г = ГN,p. We assume that the graph has N vertices, the ratio of parts is α(1-α), and the average number of the edges attached to one vertex is ap or (1-a)p. To every edge of the graph eij, we assign the weight given by a random variable aij with all moments finite. We consider the moments of the normalized eigenvalue counting measure sN,p,a of A^(N,p,a). The weak convergence in probability of the normalized eigenvalue counting measures is proved.
Исследуется распределение собственных значений матрицы смежности A^(N,p,a) взвешенного случайного двудольного графа Г = ГN,p. Предполагается, что этот граф имеет N вершин, соотношение размера его частей равно α(1-α) и средняя степень вершины равна ap и (1-a)p. К каждому ребру графа eij приписывается в качестве веса случайная величина aij, у которой все моменты конечны. Рассмотрены моменты нормированной считающей меры sN,p,a матрицы A^(N,p,a). Доказана слабая сходимость по вероятности нормированных считающих мер.
|
|---|---|
| ISSN: | 1812-9471 |