Eigenvalue Distribution of a Large Weighted Bipartite Random Graph

We study an eigenvalue distribution of the adjacency matrix A^(N,p,a) of the weighted random bipartite graph Г = ГN,p. We assume that the graph has N vertices, the ratio of parts is α(1-α), and the average number of the edges attached to one vertex is ap or (1-a)p. To every edge of the graph eij, w...

Full description

Saved in:
Bibliographic Details
Published in:Журнал математической физики, анализа, геометрии
Date:2014
Main Author: Vengerovsky, V.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2014
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/106794
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Eigenvalue Distribution of a Large Weighted Bipartite Random Graph / V. Vengerovsky // Журнал математической физики, анализа, геометрии. — 2014. — Т. 10, № 2. — С. 240-255. — Бібліогр.: 19 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-106794
record_format dspace
spelling Vengerovsky, V.
2016-10-05T19:29:14Z
2016-10-05T19:29:14Z
2014
Eigenvalue Distribution of a Large Weighted Bipartite Random Graph / V. Vengerovsky // Журнал математической физики, анализа, геометрии. — 2014. — Т. 10, № 2. — С. 240-255. — Бібліогр.: 19 назв. — англ.
1812-9471
https://nasplib.isofts.kiev.ua/handle/123456789/106794
We study an eigenvalue distribution of the adjacency matrix A^(N,p,a) of the weighted random bipartite graph Г = ГN,p. We assume that the graph has N vertices, the ratio of parts is α(1-α), and the average number of the edges attached to one vertex is ap or (1-a)p. To every edge of the graph eij, we assign the weight given by a random variable aij with all moments finite. We consider the moments of the normalized eigenvalue counting measure sN,p,a of A^(N,p,a). The weak convergence in probability of the normalized eigenvalue counting measures is proved.
Исследуется распределение собственных значений матрицы смежности A^(N,p,a) взвешенного случайного двудольного графа Г = ГN,p. Предполагается, что этот граф имеет N вершин, соотношение размера его частей равно α(1-α) и средняя степень вершины равна ap и (1-a)p. К каждому ребру графа eij приписывается в качестве веса случайная величина aij, у которой все моменты конечны. Рассмотрены моменты нормированной считающей меры sN,p,a матрицы A^(N,p,a). Доказана слабая сходимость по вероятности нормированных считающих мер.
The author is grateful to the referee for valuable remarks.
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Журнал математической физики, анализа, геометрии
Eigenvalue Distribution of a Large Weighted Bipartite Random Graph
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Eigenvalue Distribution of a Large Weighted Bipartite Random Graph
spellingShingle Eigenvalue Distribution of a Large Weighted Bipartite Random Graph
Vengerovsky, V.
title_short Eigenvalue Distribution of a Large Weighted Bipartite Random Graph
title_full Eigenvalue Distribution of a Large Weighted Bipartite Random Graph
title_fullStr Eigenvalue Distribution of a Large Weighted Bipartite Random Graph
title_full_unstemmed Eigenvalue Distribution of a Large Weighted Bipartite Random Graph
title_sort eigenvalue distribution of a large weighted bipartite random graph
author Vengerovsky, V.
author_facet Vengerovsky, V.
publishDate 2014
language English
container_title Журнал математической физики, анализа, геометрии
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
description We study an eigenvalue distribution of the adjacency matrix A^(N,p,a) of the weighted random bipartite graph Г = ГN,p. We assume that the graph has N vertices, the ratio of parts is α(1-α), and the average number of the edges attached to one vertex is ap or (1-a)p. To every edge of the graph eij, we assign the weight given by a random variable aij with all moments finite. We consider the moments of the normalized eigenvalue counting measure sN,p,a of A^(N,p,a). The weak convergence in probability of the normalized eigenvalue counting measures is proved. Исследуется распределение собственных значений матрицы смежности A^(N,p,a) взвешенного случайного двудольного графа Г = ГN,p. Предполагается, что этот граф имеет N вершин, соотношение размера его частей равно α(1-α) и средняя степень вершины равна ap и (1-a)p. К каждому ребру графа eij приписывается в качестве веса случайная величина aij, у которой все моменты конечны. Рассмотрены моменты нормированной считающей меры sN,p,a матрицы A^(N,p,a). Доказана слабая сходимость по вероятности нормированных считающих мер.
issn 1812-9471
url https://nasplib.isofts.kiev.ua/handle/123456789/106794
citation_txt Eigenvalue Distribution of a Large Weighted Bipartite Random Graph / V. Vengerovsky // Журнал математической физики, анализа, геометрии. — 2014. — Т. 10, № 2. — С. 240-255. — Бібліогр.: 19 назв. — англ.
work_keys_str_mv AT vengerovskyv eigenvaluedistributionofalargeweightedbipartiterandomgraph
first_indexed 2025-12-07T15:48:53Z
last_indexed 2025-12-07T15:48:53Z
_version_ 1850865126187466752