On the Fluctuations of Entries of Matrices whose Randomness is due to Classical Groups

We consider first the n x n random matrices Hn = An +Un*BnUn, where An and Bn are Hermitian, having the limiting normalized counting measure (NCM) of eigenvalues as n →∞, and Un is unitary uniformly distributed over U(n). We find the leading term of asymptotic expansion for the covariance of element...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Журнал математической физики, анализа, геометрии
Дата:2014
Автор: Vasilchuk, V.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2014
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/106809
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Fluctuations of Entries of Matrices whose Randomness is due to Classical Groups / V. Vasilchuk // Журнал математической физики, анализа, геометрии. — 2014. — Т. 10, № 4. — С. 451-484. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-106809
record_format dspace
spelling Vasilchuk, V.
2016-10-05T21:06:33Z
2016-10-05T21:06:33Z
2014
On the Fluctuations of Entries of Matrices whose Randomness is due to Classical Groups / V. Vasilchuk // Журнал математической физики, анализа, геометрии. — 2014. — Т. 10, № 4. — С. 451-484. — Бібліогр.: 9 назв. — англ.
1812-9471
DOI: http://dx.doi.org/10.15407/mag10.04.451
https://nasplib.isofts.kiev.ua/handle/123456789/106809
We consider first the n x n random matrices Hn = An +Un*BnUn, where An and Bn are Hermitian, having the limiting normalized counting measure (NCM) of eigenvalues as n →∞, and Un is unitary uniformly distributed over U(n). We find the leading term of asymptotic expansion for the covariance of elements of resolvent of Hn and establish the Central Limit Theorem for the elements of suffciently smooth test functions of the corresponding linear statistics. We consider then analogous problems for the matrices Wn = SnUn*TnUn, where Un is as above and Sn and Tn are non-random unitary matrices having limiting NCM's as n →∞.
Рассмотрены сначала n x n случайные матрицы вида Hn = An +Un*BnUn, где An и Bn - эрмитовы, имеющие предельную нормированную считающую меру (НСМ) собственных значений при n →∞, и Un - унитарные, распределенные равномерно по U(n). Найден ведущий член асимптотического разложения ковариации элементов резольвенты Hn и доказана Центральная Предельная Теорема для элементов достаточно гладких тестовых функций соответствующих линейных статистик. Затем аналогичные задачи рассмотрены для матриц вида Wn = SnUn*TnUn, где Un такая же, а Sn и Tn - неслучайные унитарные матрицы, имеющие предельные НСМ n →∞.
This work is supported by the Franco-Ukrainian grant Dnipro 2013-2014. The author is thankful to Prof. L. Pastur and Prof. M. Shcherbina for helpful discussions.
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Журнал математической физики, анализа, геометрии
On the Fluctuations of Entries of Matrices whose Randomness is due to Classical Groups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the Fluctuations of Entries of Matrices whose Randomness is due to Classical Groups
spellingShingle On the Fluctuations of Entries of Matrices whose Randomness is due to Classical Groups
Vasilchuk, V.
title_short On the Fluctuations of Entries of Matrices whose Randomness is due to Classical Groups
title_full On the Fluctuations of Entries of Matrices whose Randomness is due to Classical Groups
title_fullStr On the Fluctuations of Entries of Matrices whose Randomness is due to Classical Groups
title_full_unstemmed On the Fluctuations of Entries of Matrices whose Randomness is due to Classical Groups
title_sort on the fluctuations of entries of matrices whose randomness is due to classical groups
author Vasilchuk, V.
author_facet Vasilchuk, V.
publishDate 2014
language English
container_title Журнал математической физики, анализа, геометрии
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
description We consider first the n x n random matrices Hn = An +Un*BnUn, where An and Bn are Hermitian, having the limiting normalized counting measure (NCM) of eigenvalues as n →∞, and Un is unitary uniformly distributed over U(n). We find the leading term of asymptotic expansion for the covariance of elements of resolvent of Hn and establish the Central Limit Theorem for the elements of suffciently smooth test functions of the corresponding linear statistics. We consider then analogous problems for the matrices Wn = SnUn*TnUn, where Un is as above and Sn and Tn are non-random unitary matrices having limiting NCM's as n →∞. Рассмотрены сначала n x n случайные матрицы вида Hn = An +Un*BnUn, где An и Bn - эрмитовы, имеющие предельную нормированную считающую меру (НСМ) собственных значений при n →∞, и Un - унитарные, распределенные равномерно по U(n). Найден ведущий член асимптотического разложения ковариации элементов резольвенты Hn и доказана Центральная Предельная Теорема для элементов достаточно гладких тестовых функций соответствующих линейных статистик. Затем аналогичные задачи рассмотрены для матриц вида Wn = SnUn*TnUn, где Un такая же, а Sn и Tn - неслучайные унитарные матрицы, имеющие предельные НСМ n →∞.
issn 1812-9471
url https://nasplib.isofts.kiev.ua/handle/123456789/106809
citation_txt On the Fluctuations of Entries of Matrices whose Randomness is due to Classical Groups / V. Vasilchuk // Журнал математической физики, анализа, геометрии. — 2014. — Т. 10, № 4. — С. 451-484. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT vasilchukv onthefluctuationsofentriesofmatriceswhoserandomnessisduetoclassicalgroups
first_indexed 2025-11-29T09:01:47Z
last_indexed 2025-11-29T09:01:47Z
_version_ 1850854701261651968