XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation

С помощью рентгеновской фотоэлектронной спектроскопии (РФЭС) и времяпролётной вторично-ионной масс-спектрометрии (ВП-ВИМС) проведено сравнительное исследование состава поверхности и электронной структуры катализатора Au/TiO₂ в свежеприготовленном состоянии и после его использования в реакции окислен...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
Hauptverfasser: Chenakin, S.P., Kruse, N., Vasylyev, M.A., Makeeva, I.N.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут металофізики ім. Г.В. Курдюмова НАН України 2014
Schriftenreihe:Металлофизика и новейшие технологии
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/106943
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation / S.P. Chenakin, N. Kruse, M.A. Vasylyev, I.N. Makeeva // Металлофизика и новейшие технологии. — 2014. — Т. 36, № 5. — С. 597-611. — Бібліогр.: 28 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-106943
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1069432025-02-09T23:37:02Z XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation Исследование наночастиц золота на TiO₂-подложке методами РФЭС/ВП-ВИМС: влияние каталитического окисления CO Дослідження наночастинок золота на TiO₂-підкладці методами РФЕС/ЧП-ВІМС: вплив каталітичного окислення CO Chenakin, S.P. Kruse, N. Vasylyev, M.A. Makeeva, I.N. Строение и свойства наноразмерных и мезоскопических материалов С помощью рентгеновской фотоэлектронной спектроскопии (РФЭС) и времяпролётной вторично-ионной масс-спектрометрии (ВП-ВИМС) проведено сравнительное исследование состава поверхности и электронной структуры катализатора Au/TiO₂ в свежеприготовленном состоянии и после его использования в реакции окисления CO при комнатной температуре. За допомогою рентґенівської фотоелектронної спектроскопії (РФЕС) та часопролітної вторинно-іонної мас-спектрометрії (ЧП-ВІМС) проведено порівняльне дослідження складу поверхні й електронної структури каталізатора Au/TiO₂ у свіжоприготованому стані та після його використання у реакції окиснення CO за кімнатної температури. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) are employed for a comparative study of the surface composition and electronic structure of an Au/TiO₂ catalyst in the asprepared state and after using it in the reaction of CO oxidation at room temperature. A partial financial support of this work from the National Academy of Sciences of Ukraine in the framework of the Fundamental Research Program ‘Fundamental Problems of Nanostructural Systems, Nanomaterials, Nanotechnologies 2010—2014’ is greatly acknowledged. 2014 Article XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation / S.P. Chenakin, N. Kruse, M.A. Vasylyev, I.N. Makeeva // Металлофизика и новейшие технологии. — 2014. — Т. 36, № 5. — С. 597-611. — Бібліогр.: 28 назв. — англ. 1024-1809 PACS: 68.35.Dv, 79.60.Bm, 82.65.+r, 82.80.Pv, 82.80.Rt DOI: http://dx.doi.org/10.15407/mfint.36.05.0597 https://nasplib.isofts.kiev.ua/handle/123456789/106943 en Металлофизика и новейшие технологии application/pdf Інститут металофізики ім. Г.В. Курдюмова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Строение и свойства наноразмерных и мезоскопических материалов
Строение и свойства наноразмерных и мезоскопических материалов
spellingShingle Строение и свойства наноразмерных и мезоскопических материалов
Строение и свойства наноразмерных и мезоскопических материалов
Chenakin, S.P.
Kruse, N.
Vasylyev, M.A.
Makeeva, I.N.
XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation
Металлофизика и новейшие технологии
description С помощью рентгеновской фотоэлектронной спектроскопии (РФЭС) и времяпролётной вторично-ионной масс-спектрометрии (ВП-ВИМС) проведено сравнительное исследование состава поверхности и электронной структуры катализатора Au/TiO₂ в свежеприготовленном состоянии и после его использования в реакции окисления CO при комнатной температуре.
format Article
author Chenakin, S.P.
Kruse, N.
Vasylyev, M.A.
Makeeva, I.N.
author_facet Chenakin, S.P.
Kruse, N.
Vasylyev, M.A.
Makeeva, I.N.
author_sort Chenakin, S.P.
title XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation
title_short XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation
title_full XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation
title_fullStr XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation
title_full_unstemmed XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation
title_sort xps/tof-sims characterization of tio₂ supported au nanoparticles: effect of catalytic co oxidation
publisher Інститут металофізики ім. Г.В. Курдюмова НАН України
publishDate 2014
topic_facet Строение и свойства наноразмерных и мезоскопических материалов
url https://nasplib.isofts.kiev.ua/handle/123456789/106943
citation_txt XPS/ToF-SIMS Characterization of TiO₂ Supported Au Nanoparticles: Effect of Catalytic CO Oxidation / S.P. Chenakin, N. Kruse, M.A. Vasylyev, I.N. Makeeva // Металлофизика и новейшие технологии. — 2014. — Т. 36, № 5. — С. 597-611. — Бібліогр.: 28 назв. — англ.
series Металлофизика и новейшие технологии
work_keys_str_mv AT chenakinsp xpstofsimscharacterizationoftio2supportedaunanoparticleseffectofcatalyticcooxidation
AT krusen xpstofsimscharacterizationoftio2supportedaunanoparticleseffectofcatalyticcooxidation
AT vasylyevma xpstofsimscharacterizationoftio2supportedaunanoparticleseffectofcatalyticcooxidation
AT makeevain xpstofsimscharacterizationoftio2supportedaunanoparticleseffectofcatalyticcooxidation
AT chenakinsp issledovanienanočasticzolotanatio2podložkemetodamirfésvpvimsvliâniekatalitičeskogookisleniâco
AT krusen issledovanienanočasticzolotanatio2podložkemetodamirfésvpvimsvliâniekatalitičeskogookisleniâco
AT vasylyevma issledovanienanočasticzolotanatio2podložkemetodamirfésvpvimsvliâniekatalitičeskogookisleniâco
AT makeevain issledovanienanočasticzolotanatio2podložkemetodamirfésvpvimsvliâniekatalitičeskogookisleniâco
AT chenakinsp doslídžennânanočastinokzolotanatio2pídkladcímetodamirfesčpvímsvplivkatalítičnogookislennâco
AT krusen doslídžennânanočastinokzolotanatio2pídkladcímetodamirfesčpvímsvplivkatalítičnogookislennâco
AT vasylyevma doslídžennânanočastinokzolotanatio2pídkladcímetodamirfesčpvímsvplivkatalítičnogookislennâco
AT makeevain doslídžennânanočastinokzolotanatio2pídkladcímetodamirfesčpvímsvplivkatalítičnogookislennâco
first_indexed 2025-12-01T19:39:19Z
last_indexed 2025-12-01T19:39:19Z
_version_ 1850336045309100032
fulltext 597 СТРОЕНИЕ И СВОЙСТВА НАНОРАЗМЕРНЫХ И МЕЗОСКОПИЧЕСКИХ МАТЕРИАЛОВ PACS numbers: 68.35.Dv, 79.60.Bm, 82.65.+r, 82.80.Pv, 82.80.Rt XPS/ToF-SIMS Characterization of TiO2 Supported Au Nanoparticles: Effect of Catalytic CO Oxidation S. P. Chenakin, N. Kruse*, M. A. Vasylyev, and I. N. Makeeva G. V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03680 Kyyiv-142, Ukraine *Université Libre de Bruxelles, Chimie-Physique des Matériaux, CP 243, 1050 Bruxelles, Belgium X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) are employed for a comparative study of the surface composition and electronic structure of an Au/TiO2 catalyst in the as- prepared state and after using it in the reaction of CO oxidation at room tem- perature. As found, the reaction-induced changes in the morphology of Au nanoparticles related to their agglomeration are accompanied by modifica- tion of the electronic state of the catalyst via an enhanced electron transfer to the gold atoms that shows up as an additional negative shift of the Au 4f spectrum and its distortion. The catalytic reaction of CO oxidation results in the loss of hydroxyl groups and accumulation on the support surface of vari- ous carbon-containing species with the leading formation of carbonate and bicarbonate groups, which increases with time on stream. The role of these factors in deactivation of the catalyst is discussed. За допомогою рентґенівської фотоелектронної спектроскопії (РФЕС) та часопролітної вторинно-іонної мас-спектрометрії (ЧП-ВІМС) проведено порівняльне дослідження складу поверхні й електронної структури ката- лізатора Au/TiO2 у свіжоприготованому стані та після його використання у реакції окиснення CO за кімнатної температури. Встановлено, що інду- ковані каталітичною реакцією зміни у морфології наночастинок Au, які спричинені їхньою аґломерацією, супроводжувалися модифікуванням електронного стану каталізатора завдяки посиленому перенесенню елек- тронів на атоми золота, що проявлялося як додатковий неґативний зсув РФЕ-спектра Au 4f і його спотворення. Каталітична реакція окиснення CO призводила до втрати гідроксильних груп та накопичення на поверхні підкладки різних вуглецевмісних функціональних груп з переважним Металлофиз. новейшие технол. / Metallofiz. Noveishie Tekhnol. 2014, т. 36, № 5, сс. 597—611 Оттиски доступны непосредственно от издателя Фотокопирование разрешено только в соответствии с лицензией 2014 ИМФ (Институт металлофизики им. Г. В. Курдюмова НАН Украины) Напечатано в Украине. 598 S. P. CHENAKIN, N. KRUSE, M. A. VASYLYEV, and I. N. MAKEEVA формуванням карбонатів і бікарбонатів, яке посилювалося з часом реак- ції. Обговорюється роль цих чинників у деактивації каталізатора. С помощью рентгеновской фотоэлектронной спектроскопии (РФЭС) и времяпролётной вторично-ионной масс-спектрометрии (ВП-ВИМС) про- ведено сравнительное исследование состава поверхности и электронной структуры катализатора Au/TiO2 в свежеприготовленном состоянии и по- сле его использования в реакции окисления CO при комнатной темпера- туре. Установлено, что индуцированные каталитической реакцией изме- нения в морфологии наночастиц Au, вызванные их агломерацией, сопро- вождались модификацией электронного состояния катализатора путём усиленного переноса электронов на атомы золота, что проявлялось в виде дополнительного отрицательного сдвига РФЭ-спектра Au 4f и его иска- жения. Каталитическая реакция окисления CO приводила к потере гид- роксильных групп и накоплению на поверхности подложки различных углеродсодержащих функциональных групп с преимущественным фор- мированием карбонатов и бикарбонатов, которое усиливалось с течением времени реакции. Обсуждается роль этих факторов в деактивации ката- лизатора. Key words: Au/TiO2 catalyst, carbonates, CO oxidation, sintering, XPS, ToF- SIMS. (Received 25 December, 2013) 1. INTRODUCTION Gold nanoclusters supported on various metal oxides have been exten- sively studied, since they exhibit high catalytic activity for various types of reactions of industrial interest. In particular, performance of the most active titania-supported gold catalysts, Au/TiO2, in low- temperature CO oxidation has received considerable attention that stems from a variety of potential practical applications [1]. Numerous experimental methods have been applied in the search for the active site in the CO oxidation over supported gold catalysts, in determining the influence of various parameters on the surface composition and physicochemical state of the catalysts. In particular, X-ray photoelec- tron spectroscopy (XPS) has been widely used, mainly because changes in the chemical and electronic state of small metal clusters can be rou- tinely monitored, using this technique. Appreciation of the chemical and physical changes that can occur during catalytic reaction is very important for understanding the per- formance of catalysts and the causes of their deactivation. In this re- gard, in situ XPS can especially be helpful due to its potential to iden- tify mechanistically essential transient species under reaction condi- tions [2]. On the other hand, post-reaction ex situ XPS characteriza- tion of Au catalysts, or analysis of the ‘quenched’ states, proved to be XPS/ToF-SIMS CHARACTERIZATION OF TiO2 SUPPORTED Au NANOPARTICLES 599 useful for ascertaining the reaction effect on the oxidation state and electronic structure of gold nanoparticles. Park and Lee [3] were prob- ably the first who compared the Au 4f XP spectra of calcined Au/Fe2O3 and Au/Al2O3 catalysts before and after reaction of CO oxidation at 313 K performed under the dry and wet conditions. As was established, during the reaction in the dry condition the oxidized gold phases (Au2O3 in Au/Fe2O3, Au(OH)3 and Au2O3 in Au/Al2O3), which coexisted in the as-prepared catalysts along with Au0, were reduced almost com- pletely to metallic Au, however after the reaction in the wet condition about 40% of the oxidic gold remained. The gradual reduction of AuIII species to metallic gold in an Au/Fe2O3 catalyst was also observed in work [4], whereas in an Au/CeO2 catalyst the AuIII ions were reduced under CO oxidation reaction conditions to Au  species [5]. The data on the chemical and electronic state of gold nanoparticles in different catalysts used in the CO oxidation as determined by the Au 4f binding energy are rather contradictory, although they clearly indi- cate that formation and modification of the particles’ electronic state strongly depend on the nature of support. For the Au/TiO2 system, in which gold was in a metallic state, the reaction of CO oxidation was ob- served to cause an appreciable shift of the Au0 4f peak to lower binding energies as compared to the fresh catalyst [6, 7]. A similar negative shift of the Au 4f and Au 4d lines was also reported for an Au/Al2O3 catalyst used in the CO oxidation [8]. Conversely, in works [7, 9] no significant shift of the Au 4f line was detected for Au/Al2O3 and Au/TiO2 catalysts after CO oxidation. Also, the position of the Au 4f line was noted to remain practically unaffected in the used Au/ZrO2 [7, 10] and Au/MnOx [11] catalysts. The aim of the present work was to systematically study the influ- ence of reaction of CO oxidation at room temperature on the surface composition, chemical state and electronic structure of two Au/TiO2 catalysts prepared by using different routes and, accordingly, to revis- it the reported Au 4f core-level shifts. For this purpose, we employed XPS and time-of-flight secondary ion mass spectrometry (ToF-SIMS) which are known to be most suitable analytical techniques for charac- terization of physical-chemical state of the surface of materials and provide valuable complementary information. 2. EXPERIMENTAL The Au/TiO2 catalyst was prepared by deposition—precipitation (DP) technique. In the first series, titania was obtained by precipitation of titanium oxalate Ti(C2O4)2 from titanium tetraisopropoxide Ti(OC(CH3)3)4 using a 1.5-fold excess of oxalic acid dihydrate in ace- tone. The dried precipitate was subsequently decomposed under (O2   10% Ar) ambient at 525C during 4 h to form TiO2. XRD confirmed 600 S. P. CHENAKIN, N. KRUSE, M. A. VASYLYEV, and I. N. MAKEEVA titania to be present as anatase. Deposition—precipitation of Au on the as-prepared TiO2 support occurred from an aqueous solution of HAuCl4, the precipitating agent being urea H2NCONH2. The precipi- tate was subsequently subjected to temperature-programmed oxida- tion (3C/min, 10% O2 in Ar) followed by calcination at 300C for 2 h. We denote this sample ‘DP1’. In the second series, the Au/TiO2 catalyst ‘DP2’ was prepared in the same way as DP1 but the oxalate route to TiO2 was modified, namely, to test the possible catalytic influence of Mg, precipitation of Ti(C2O4)2 was performed at a reduced oxalic acid excess but with adding MgNO36H2O to the solution in the amount which should provide dop- ing of TiO2 with 0.04% wt. Mg. In both catalysts, DP1 and DP2, the resulting Au loading was about 1.5% wt. According to TEM measure- ments, the average diameter of Au nanoparticles was 3.0—3.9 nm. The Brunauer—Emmet—Teller (BET) surface area of the Au/TiO2 catalysts was 100 m 2/g. Note that the catalysts DP1 and DP2 were prepared in a sodium-free environment. Catalytic CO oxidation tests over Au/TiO2 catalysts were performed at room temperature in a 2% CO  2% O2 (Ar balance) gas mixture, with the flux being 50—100 ml/min. The duration of catalytic reaction test was 60 min for DP1 and 151 min for DP2. The surface physicochemical state of the catalysts was studied in a combined XPS/ToF-SIMS instrument at a base pressure of 5.210 10 mbar. For XPS, a non-monochromatic MgK-radiation was used at an operating power of 15 kV10 mA. Prior to analysis, the samples were outgassed for 100 h in a preparation chamber at a base pressure of 610 10 mbar. Photoelectron core-level spectra were acquired with a hemispherical analyzer in the constant-pass-energy mode at Ep  50 eV with a 0.05 eV energy step. The overall resolution of the spectrometer in this operating mode was 0.96 eV. Au 4f core-level spectra recorded from a pure sputter-cleaned Au foil were used as a reference for bulk metallic gold, and the spectrometer was calibrated against the Au 4f7/2 line set at 84.0 eV. To minimize X-ray damage of the catalyst [12], ac- quisition of core-level spectra was started immediately after exposing the sample to the operating X-ray source and the exposure was kept as low as possible. After subtraction of the Shirley-type background, the core-level spectra were decomposed into their components with mixed Gaussian—Lorentzian lines by a non-linear least squares curve-fitting procedure, using a public software package XPSPEAK 4.1. Deconvo- luted peak areas and standard sensitivity factors [13] were used to evaluate the surface composition of the samples. The carbon C 1s line at 284.8 eV was taken as a reference for surface-charging corrections. Static ToF-SIMS analysis of the catalyst was carried out with a puls- ing (7.7 kHz) beam of 5 keV Ar  ions, using a reflection analyzer. Posi- tive secondary ions were registered in the mass range up to m/z  400 XPS/ToF-SIMS CHARACTERIZATION OF TiO2 SUPPORTED Au NANOPARTICLES 601 with a mass resolution of m/m  1230 at 51 a.m.u. XPS-SIMS measurements were carried out for the as-prepared cal- cined Au/TiO2 catalyst (hereinafter referred to as ‘Fresh’) and for the same catalyst after its using in reaction of CO oxidation (denoted ‘Used’). Both samples, the fresh and the used catalyst, were loaded on the sample holder and analyzed sequentially, under the same experi- mental conditions. The measurements were performed for two samples of each catalyst (DP1 and DP2) and the data were reproducible. 3. RESULTS AND DISCUSSION The sample DP1 demonstrated the highest catalytic activity and good stability during the time of the test, with the CO to CO2 conversion be- ing about 88%. The catalytic activity of DP2 was somewhat lower but also rather stable; with increasing reaction time up to 151 min the CO to CO2 conversion gradually decreased from 81 to 79% (Fig. 1). Figure 2 shows characteristic XPS core-level spectra for an Au/TiO2 catalyst. According to the deconvolution results, the Ti 2p spectrum of all catalysts is dominated by species with a binding energy (BE) of the Ti 2p3/2 photoelectrons of 458.7 eV related to the Ti4  oxidation state. Besides, a small contribution (3—4%) of reduced species Ti3  , which appears at a BE of  2.5 eV below the Ti4  peak, is detected. The asym- metrical O 1s spectra can be deconvoluted into three components. The major component at BE 530 eV is obviously related to O 2 species, while two minor components at 531.2 and 532.2 eV may be attribut- ed to the presence of the surface hydroxyl groups OH  on TiO2 support Fig. 1. CO-to-CO2 conversion at room temperature as a function of reaction time over Au/TiO2 catalysts prepared by the deposition—precipitation routes DP1 (curve 1) and DP2 (curve 2). See text for details of preparation. 602 S. P. CHENAKIN, N. KRUSE, M. A. VASYLYEV, and I. N. MAKEEVA (and/or subsurface low-coordinated oxygen ions O  ) and adsorbed wa- ter molecules, respectively. Interpretation of the O 1s peak structure for Au/TiO2 catalysts and TiO2 was recently discussed in detail else- where [12]. The C 1s spectrum of the Au/TiO2 catalysts is dominated by C—H/C—C species at BE  284.8 eV resulting from contamination of the surface by hydrocarbons (adventitious carbon). The minor components at 286.4 eV and 288.9 eV correspond to C—O and OC—O species, re- spectively [14]. The position of the Ti 2p3/2, O 1s and C 1s peaks did not change after using the catalysts in the reaction of CO oxidation. Fitting the Au 4f spectra of the Au/TiO2 catalysts shows gold nano- particles to be exclusively in a single metallic state. As can be seen in Fig. 2, the Au 4f spectrum of fresh catalyst is shifted with respect to the spectrum of Au foil toward lower binding energies. In fresh DP1 and DP2 catalysts, the Au 4f7/2 BE corrected for charging effect turned Fig. 2. Ti 2p, O 1s, C 1s and Au 4f XPS core level spectra for an Au/TiO2 cata- lyst. The presented Au 4f spectra correspond to pure Au foil (1), fresh (2) and used Au/TiO2 catalyst (3). The binding energy scale is corrected for surface charging effect. Chemical species derived from deconvolution of the spectra are indicated. XPS/ToF-SIMS CHARACTERIZATION OF TiO2 SUPPORTED Au NANOPARTICLES 603 out to be lower than that in bulk Au by 0.36  0.02 eV and 0.31  0.02 eV, respectively, implying that Au clusters are electronically different from bulk Au. A similar negative shift of the Au 4f line was also ob- served for World Gold Council standard Au/TiO2 catalyst and was dis- cussed in detail in the previous work [12]. The negative shift of the Au 4f BE indicates a charge transfer from TiO2 to Au atoms making them somewhat negatively charged [15]. The strong interaction of the inter- facial Au atoms with reduced Ti3  species of the support, yielding Au  electronic state of gold atoms, is considered [16] to be crucial for acti- vation of O2. According to ab initio calculations, the extra negative charge on the anionic Au clusters as compared to the neutral clusters can enhance not only O2 adsorption but also the strength of coadsorp- tion of CO and O2, which leads to a lower reaction barrier in the oxida- tion step and, consequently, to a higher catalytic activity [17]. The reaction of CO oxidation carried out over Au/TiO2 catalysts has caused significant changes in the electronic state of Au nanoparticles, both after short (1 h, DP1) and long (2.5 h, DP2) time on stream. In- deed, as can be seen from Fig. 2 and 3, a, after catalytic reaction a fur- ther decrease of the Au 4f BE in the used catalyst occurred as compared with the fresh one, with the total negative shift with respect to the bulk Au amounting to 0.45  0.05 eV for DP1 and 0.41  0.03 eV for DP2. This observation is in agreement with other works [6, 7, 18] re- porting a similar shift of the Au 4f spectrum toward lower binding en- ergies for Au/TiO2 catalysts used in the CO oxidation reaction. The ad- ditional negative shift of the Au 4f line in the used catalyst may result a b c Fig. 3. The shift of the Au 4f7/2 binding energy in Au/TiO2 catalyst with re- spect to that in bulk Au (a), the ratio of intensities of the Au 4f7/2 and 4f5/2 spin orbit peaks (b) and the Au surface atomic concentration (c) derived from XP spectra of DP1 and DP2 catalysts in the fresh state and after using in the reaction of CO oxidation. 604 S. P. CHENAKIN, N. KRUSE, M. A. VASYLYEV, and I. N. MAKEEVA from reaction-induced enhancement of charge transfer to the gold at- oms (or stronger interaction of Au nanoparticles with the support) and/or interaction of CO with Au nanoparticles giving rise to for- mation of stable Au  —CO species [19]. Other parameters of the Au 4f spectrum also suffered transfor- mation. Due to spin-orbit coupling effects, the 4f photoemission from Au is in fact split between two peaks with different BE, Au 4f7/2 and Au 4f5/2, which correspond to final states with total angular momentum J  L  S  7/2 and J  L  S  5/2, respectively. The relative intensi- ties of the two peaks reflect the degeneracy of the final spin states and are described by the ratio (2J  1)/(2J  1). In the fresh Au/TiO2 cata- lysts, the Au 4f7/2-to-4f5/2 area ratio for the two spin-orbit peaks was close to a theoretical value of 4/3 and was higher than that measured for the bulk Au (1.26  0.02) (Fig. 3, b). After catalytic reaction the 4f7/2:4f5/2 peak area ratio noticeably decreased (by 13.5% for DP1 and 17.2% for DP2). This redistribution of intensity of the spin orbit peaks in the used catalyst observed for the first time indicates the change in the probability of transition to a degenerate spin state dur- ing photoionization, which may be caused by reaction-induced modifi- cation of the structural and electronic state of Au atoms. In the fresh Au/TiO2 catalysts, the surface gold content evaluated from XPS data was 0.42—0.44 at.%. Small variations in the concentra- tion of Au on the surface of DP1 and DP2 at the same Au loading may result from different dispersion of supported Au nanoparticles. After catalytic reaction the surface Au concentration in the catalysts de- creased to 0.3 at.%, i.e. by about 30% as compared with the fresh sam- ple (Fig. 3, c). Respectively, the Au/Ti atomic ratio, which character- izes dispersion of Au nanoparticles, decreased after catalytic test from 0.013 to 0.009. Such a noticeable ‘apparent’ decrease in the Au con- tent, which was also observed in works [6, 10], indicates a decrease in the Au coverage associated with agglomeration and 3D-growth of Au nanoparticles occurring effectively during both short and long reac- tion time. Note, however, that this reaction-induced agglomeration process, which manifested itself in a 30% decrease of the Au coverage, did not lead to an appreciable deactivation of the catalysts (Fig. 1). The reaction-induced agglomeration, or sintering, of Au nanoparti- cles was observed in a number of works. According to high-resolution TEM measurements, the reaction of CO oxidation over the Au/TiO2 catalyst at 30C for 33 h [9] or at 200C for 6 h [18] caused the in- crease in the average gold particle size by about 50% and 76%, respec- tively. In Au/Al2O3 catalyst, after 7 h of CO oxidation at room temper- ature, the mean width of the gold particles increased from 2.3 to 3.2 nm [8], mainly due to aggregation of smaller Au nanoparticles. Re- cent in situ studies using scanning tunnel microscopy [20] revealed that sintering of Au nanoparticles supported on TiO2(110) began im- XPS/ToF-SIMS CHARACTERIZATION OF TiO2 SUPPORTED Au NANOPARTICLES 605 mediately upon the introduction of a CO/O2  1/1 gas mixture and pro- ceeded via Ostwald ripening. After 2 h of CO oxidation at room tem- perature, the number density of the Au particles decreased by 57% and then decreased slowly thereafter. It was established that the acti- vation energy of sintering for Au particles correlates with the activa- tion energy of CO oxidation and is consistent with a reaction-induced mechanism. Thus, we can conclude that the large amount of energy re- leased during the exothermic CO oxidation reaction [8] occurring on the surface of the Au/TiO2 catalyst could be enough to promote chang- es in the morphology and electronic structure of gold nanoparticles and local alterations in the support after several hours on stream. The CO oxidation-induced decrease in the Au surface coverage ob- served with XPS correlates with an appreciable decrease in the surface content of Na and K impurities detected by SIMS (cf. Figs. 3, c and 4, a), which, due to its high sensitivity, allows detection of alkali ele- ments at a very low level. This may be related to the interaction and association of alkali atoms with Au nanoparticles forming active cen- tres Au  Na  , Au  K  . Note that the relative emission of NaTiO  and KTiO  secondary ions characterizing interaction of alkali atoms with the TiO2 support somewhat increased after reaction (Fig. 4, b) in ac- cordance with a decrease in the Au particle surface coverage. Figure 5 compares the atomic concentration of different oxygen species, O 2, OH  and H2O, derived from the O 1s spectra (Fig. 2) on the surface of the fresh and used DP1 and DP2 catalysts. In DP1, the con- tent of the lattice oxygen O 2 in the support slightly increased after re- action (by 2.1%), whereas in DP2 it decreased by 3.2% (Fig. 5, a). Accordingly, the O2/Ti atomic ratio changed from 2.03  0.08 to a b c Fig. 4. The emission of Na  , K  (a), NaTiO  , KTiO  (b), TiOH  and C  secondary ions normalized by emission of Ti  ions from fresh and used DP2 catalyst. 606 S. P. CHENAKIN, N. KRUSE, M. A. VASYLYEV, and I. N. MAKEEVA 2.11  0.05 in DP1 and from 2.08  0.02 to 2.04  0.03 in DP2. Con- sistent alterations occurred also in the Ti 2p spectra (Fig. 2). In DP1, the fraction of reduced Ti3  species decreased as a result of the catalytic reaction from 4.4 to 3.8%, whereas in DP2 the Ti3  fraction increased from 4.5 to 5.3%. Such variations of the O 2/Ti atomic ratio and the Ti3  fraction in DP1 and DP2 imply that, depending on duration of the test, the catalytic reaction can cause either some additional oxidation of the support or, on the contrary, some reduction of TiO2 due to par- ticipation of the lattice oxygen in the reaction of CO oxidation, i.e. the processes of reduction-oxidation of the support during the course of reaction appear to be alternating. Emission of characteristic molecular secondary ions such as TiOH  ,  2TiOH , TiO2H  , ,OHTi 32  OH  and H2O  observed by SIMS and occur- rence of the O 1s components at 531 eV and 532 eV in XPS (Fig. 2) for the Au/TiO2 catalyst indicate the presence of hydroxyl groups and adsorbed water on the support surface. The hydroxylation and hydra- tion of the catalyst surface may originate from using the oxalic acid dihydrate C2O2(OH)22H2O for precipitation of titanium oxalate or/and from adsorption of water and formation of hydroxyl groups on the sur- face of the calcined catalysts in atmosphere. As can be seen in Figure 5, b, the content of OH  groups in fresh cat- alyst DP1 is larger than in DP2. This is consistent with a smaller O2/Ti4  atomic ratio in DP1 as mentioned above and may indicate a partial substitution of oxygen atoms in the lattice of TiO2 by hydroxyl groups. The higher level of the initial surface hydroxylation in fresh DP1 may be favourable for attaining a higher catalytic activity as compared with DP2 (Fig. 1). Indeed, as has recently been shown [21], a b c Fig. 5. The concentration of O 2 (a), OH  (b) and H2O species on the surface of fresh and used DP1 and DP2 Au/TiO2 catalysts derived from the O 1s XP spectra. XPS/ToF-SIMS CHARACTERIZATION OF TiO2 SUPPORTED Au NANOPARTICLES 607 the activity of supported Au catalysts in CO oxidation increases with increasing the extent of support hydroxylation. The important role of surface hydroxyls in the enhancement of activity of the Au/TiO2 cata- lyst was assigned [22] to a significant charge transfer at the interface of the Au nanoparticle and TiO2 that resulted in reducing the CO oxida- tion reaction barrier. The hydroxyl group adsorbed on the support and bonded to an Au cation or to a highly coordinatively unsaturated me- tallic Au atom at the periphery of Au nanoparticle was also considered [1, 23, 24] to be a part of the active site involved in CO oxidation. The surface content of the hydroxyl-related component OH  in DP1 and DP2 catalysts derived from the O 1s spectra decreased after reac- tion by about 17% and 12%, respectively (Fig. 5, b). The XPS data are supported by SIMS measurements, which display a noticeable decrease in the emission of OH  and TiOH  ions after using the catalyst in the reaction (Fig. 4, c). These results are in accordance with in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) ob- servations of the loss of OH groups from the support during the reac- tion of CO oxidation over Au/TiO2 catalyst [18, 25]. As distinct from the hydroxyls, the amount of adsorbed water estimated from the O 1s spectra did not change much after the reaction (Fig. 5, c). The loss of hydroxyl groups in the used catalysts is consistent with a mechanism [23, 24], which is based on the active site model mentioned above. According to this mechanism, CO adsorbed on metallic Au is in- serted into an Au—OH bond to form a hydroxycarbonyl (CO  OH   OCOH  ). The hydroxycarbonyl is oxidized to a bicarbonate  3 HCO , which is then decomposed into Au—OH and CO2. In addition to decom- posing to CO2, the bicarbonate intermediate also reacts by a parallel pathway of deprotonation with substrate hydroxyl to form a carbonate (  3HCO  OH  2 3CO  H2O). The carbonate on the catalyst surface can also be formed by the reaction of hydroxycarbonyl with surface hy- droxyl groups (OCOH   OH  2 3CO  H2O) [19], whereas the reaction of adsorbed CO with bridging hydroxyl groups can fuel formation of relatively inactive formate species HCOO  [18]. Thus, the hydroxyls participate in the reaction and are consumed accordingly to produce formates/carbonates, i.e. the support is depleted of OH groups during the reaction. The formation of various carbon-containing species on the catalyst surface was evidenced by both XPS and SIMS measure- ments as described below. In fresh catalysts DP1 and DP2, the respective surface concentra- tions of carbon-containing species C—C, C—O and O—CO derived from C 1s spectra (Fig. 2) were about the same, and after the reaction of CO oxidation, they all increased. Accordingly, an increase in the total sur- face carbon content after using the catalysts in the reaction was de- tected in both XPS (as represented by the full C 1s peak area in Fig. 6) and SIMS (as represented by the C  /Ti  ion peaks ratio in Fig. 4, c). The 608 S. P. CHENAKIN, N. KRUSE, M. A. VASYLYEV, and I. N. MAKEEVA relative change of the surface concentration of carbon-containing spe- cies induced by the CO oxidation, (Cused  Cfresh)/Cfresh, or effect of the reaction, is plotted in Fig. 6 for DP1 and DP2. As can be seen, the reac- tion-induced additional formation of various carbon species in both catalysts is enhanced in the series C—C  C—O  O—CO, with the largest augmentation being observed for the carboxylate group O—CO (by 18% for DP1 and 58% for DP2). It is noteworthy that with increas- ing time on stream the concentrations of all the carbon species and the total carbon content appreciably increase (cf. reaction effects for DP1 and DP2 in Fig. 6). Furthermore, emission of molecular ions TiC  , TiCO  , TiCOH  , ,TiCO2  TiCO2H  , ,TiCO3  and TiCO3H  observed from fresh catalysts indicates the presence already in the initial state of various functional groups such as carbonyl (—CO), hydroxy (—C—OH) or formyl (H—CO), carboxylate (O—CO), hydroxycarbonyl (OC—OH) or formate (O— CHO), carbonate (OO—CO), and bicarbonate (OO—C—OH). Apparent- ly, these species were formed on the support surface as a result of in- teraction of atmospheric CO2 and moisture with TiO2 [19, 26] which is corroborated by nearly the same intensity of emission of these ions from the fresh Au/TiO2 catalyst and pure TiO2 (Fig. 7). Using the cata- lyst in the reaction of CO oxidation gave rise to a noticeable increase in the ion emission of all the carbon-containing species (Fig. 7) that evi- dences their accumulation on the support surface. The enhanced emis- sion of  2TiCO and TiCO2H  ions from the used catalyst (Fig. 7) may in- dicate a higher population of carboxylate and hydroxycarbonyl/forma- te moieties on the catalyst surface as compared to other species. On the other hand, the largest relative change of the emission after the cata- lytic reaction was observed for  3TiCO and TiCO3H  ions (98% and 136%, respectively), which implies the preferential formation of carbonate and bicarbonate groups. These results are consistent with Fig. 6. The relative change of the surface concentration of various carbon- containing species caused by the reaction of CO oxidation, (Cused  Cfresh)/Cfresh, derived from the C 1s XP spectra of DP1 and DP2 catalysts. XPS/ToF-SIMS CHARACTERIZATION OF TiO2 SUPPORTED Au NANOPARTICLES 609 XPS data (Fig. 6) and agree with DRIFTS measurements showing for- mation and build-up of carbonates, carboxylates, hydroxycarbon- yls/formates, and bicarbonates on Au/TiO2 during CO oxidation [6, 9, 18, 19, 25]. The point whether the carbonates reside on the gold [19], on the support [9, 18, 27], on the Au—TiO2 border [6], or on both the Au and the support [28] is still in debate. Our SIMS data demonstrating an intense emission of molecular ions  2TiCO , TiCO2H  ,  3TiCO , and Ti- CO3H  from the used catalyst suggest that these carbonate-like species are not intermediates in the reaction mechanism but strongly bound to the catalyst and most likely reside on the titania support. The loss of activity with time on stream is a crucial factor that could hamper the industrial development of gold-based catalysts. Deactiva- tion of the catalyst was suggested to occur due to reduction of oxidized gold species (which were claimed to be the most active sites for CO oxi- dation) to metallic gold [3, 4], sintering of Au nanoparticles (irreversi- ble) [6, 15, 18], dehydroxylation of the support during the reaction (assuming that OH groups were involved in the oxidation pathway) [23, 24], and accumulation of carbonate-like species (carbonate 2 3CO , formate  2HCO and carboxylate O—CO groups) at the active sites [6, 9, 19, 25, 27, 28]. In our work, some sintering, dehydroxylation and build-up of surface carbonate-like species occurred in the catalyst (DP1) already after 1 h on stream, although no deactivation was ob- served (Fig. 1, curve 1). On the other hand, the catalyst DP2, which is characterized by a significantly larger extent of the surface carboniza- tion after 2.5 h on stream (Fig. 6) at nearly the same levels of sintering a b Fig. 7. The emission of TiC  , TiCO  ,  2TiCO ,  3TiCO (a) and TiCOH  , TiCO2H  , TiCO3H  (b) secondary ions normalized by emission of Ti  ions from fresh and used Au/TiO2 DP2 catalyst and from TiO2. 610 S. P. CHENAKIN, N. KRUSE, M. A. VASYLYEV, and I. N. MAKEEVA (Fig. 3, c) and dehydroxylation (Fig. 5, b), did demonstrate some de- cline of activity (Fig. 1). This indicates the decisive role in deactivation of carbonate-like species, which gradually accumulate during the reac- tion, covering the surface and acting as catalyst poison. A partial re- generation of activity may occur via reaction of carbonates with ad- sorbed H2O and/or of formates with activated oxygen to form thermal- ly less stable bicarbonates with their subsequent decomposition (—CO3   H2O —CO3H  OH,  2HCO  O *—CO3H, —CO3H CO2  OH) [24, 25]. 4. CONCLUSIONS Using the Au/TiO2 catalyst in the reaction of CO oxidation at room temperature for 1—2.5 h on stream gives rise to a number of changes in the morphological and electronic state of Au nanoparticles and chemi- cal composition of the support. As has been observed, the catalytic re- action causes some agglomeration, or sintering, of Au nanoparticles and enhances electron transfer to the gold atoms making them more negatively charged. The reaction-induced modification of the struc- tural and electronic state of Au atoms results in the redistribution of intensity of the Au 4f spin orbit peaks in the used catalyst. The reac- tion of CO oxidation is accompanied by the loss of hydroxyl groups and the noticeable accumulation of various carbon-containing species on the support surface with the preferential formation of carbonate and bicarbonate groups. These moieties appear to block the active sites and thus play a key role in the gradual deactivation of the catalyst. A partial financial support of this work from the National Academy of Sciences of Ukraine in the framework of the Fundamental Research Program ‘Fundamental Problems of Nanostructural Systems, Nano- materials, Nanotechnologies 2010—2014’ is greatly acknowledged. REFERENCES 1. J. C. Bond and D. T. Thompson, Gold Bull., 33: 41 (2000). 2. E. A. Willneff, S. Braun, D. Rosenthal, H. Bluhm, M. Hävecker, E. Kleimenov, A. Knop-Gericke, R. Schlögl, and S. L. M. Schroeder, J. Am. Chem. Soc., 128: 12052 (2006). 3. E. D. Park and J. S. Lee, J. Catal., 186: 1 (1999). 4. A. M. Visco, F. Neri, G. Neri, A. Donato, C. Milone, and S. Galvagno, Phys. Chem. Chem. Phys., 1: 2869 (1999). 5. A. M. Venezia, G. Pantaleo, A. Longo, G. Di Carlo, M. P. Casaletto, F. L. Liotta, and G. Deganello, J. Phys. Chem. B, 109: 2821 (2005). 6. P. Konova, A. Naydenov, Cv. Venkov, D. Mehandjiev, D. Andreeva, and T. Tabakova, J. Mol. Catal. A: Chem., 213: 235 (2004). 7. S. Arrii, F. Morfin, A. J. Renouprez, and J. L. Rousset, J. Am. Chem. Soc., 126: 1199 (2004). XPS/ToF-SIMS CHARACTERIZATION OF TiO2 SUPPORTED Au NANOPARTICLES 611 8. G. M. Veith, A. R. Lupini, S. J. Pennycook, G. W. Ownby, and N. J. Dudney, J. Catal., 231: 151 (2005). 9. Y. Denkwitz, Z. Zhao, U. Hörmann, U. Kaiser, V. Plzak, and R. J. Behm, J. Catal., 251: 363 (2007). 10. P. Konova, A. Naydenov, T. Tabakova, and D. Mehandjiev, Catal. Commun., 5: 537 (2004). 11. L.-C. Wang, Q. Liu, X.-S. Huang, Y.-M. Liu, Y. Cao, and K.-N. Fan, Appl. Catal. B, 88: 204 (2009). 12. N. Kruse and S. P. Chenakin, Appl. Catal. A: Gen., 391: 367 (2011). 13. Handbook of X-Ray Photoelectron Spectroscopy (Eds. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg) (Eden Prairie: Perkin-Elmer Corp.: 1979). 14. G. P. Lуpez, D. G. Castner, and B. D. Ratner, Surf. Interface Anal., 17: 267 (1991). 15. D. W. Goodman, Catal. Lett., 99: 1 (2005). 16. A. Vijay, G. Mills, and H. Metiu, J. Chem. Phys., 118: 6536 (2003). 17. Y. Gao, N. Shao, Y. Pei, Z. Chen, and X. C. Zeng, ACS Nano, 5: 7818 (2011). 18. K. Y. Ho and K. L. Yeung, J. Catal., 242: 131 (2006). 19. M. C. Raphulu, J. McPherson, E. van der Lingen, J. A. Anderson, and M. S. Scurrell, Gold Bull., 43: 334 (2010). 20. F. Yang, M. S. Chen, and D. W. Goodman, J. Phys. Chem. C, 113: 254 (2009). 21. C. J. Karwacki, P. Ganesh, P. R. C. Kent, W. O. Gordon, G. W. Peterson, J. J. Niu, and Y. Gogotsi, J. Mater. Chem. A, 1: 6051 (2013). 22. P. Ganesh, P. R. C. Kent, and G. M. Veith, J. Phys. Chem. Lett., 2: 2918 (2011). 23. C. K. Costello, M. C. Kung, H.-S. Oh, Y. Wang, and H. H. Kung, Appl. Catal. A: Gen., 232: 159 (2002). 24. M. C. Kung, R. J. Davis, and H. H. Kung, J. Phys. Chem. C, 111: 11767 (2007). 25. B. Schumacher, Y. Denkwitz, V. Plzak, M. Kinne, and R. J. Behm, J. Catal., 224: 449 (2004). 26. J. C. Clark, S. Dai, and S. H. Overbury, Catal. Today, 126: 135 (2007). 27. J. Saavedra, C. Powell, B. Panthi, C. J. Pursell, and B. D. Chandler, J. Catal., 307: 37 (2013). 28. B. Schumacher, V. Plzak, M. Kinne, and R. J. Behm, Catal. Lett., 89: 109 (2003). << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E> /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e> /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002> /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002> /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e> /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e> /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e> /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e> /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a> /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e> /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e> /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E> /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e> /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e> /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002> /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e> /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e> /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e> /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e> /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e> /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e> /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e> /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e> /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e> /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e> /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e> /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e> /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e> /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e> /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice