AdS₄ x CP³ superstring as OSp(4|6)/(SO(1,3) x U(3)) sigma-model in conformal basis

Basic features of Lagrangian formulation for AdS₄ x CP³ superstring in the framework of OSp(4|6)/(SO(1,3) x U(3)) sigma-model approach are reviewed with the emphasis on realization osp(4|6) background isometry superalgebra as D = 3 N = 6 superconformal algebra. Обсуждается лагранжева динамика ІІА су...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Вопросы атомной науки и техники
Дата:2012
Автор: Uvarov, D.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2012
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/106976
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:AdS₄ x CP³ superstring as OSp(4|6)/(SO(1,3) x U(3)) sigma-model in conformal basis / D.V. Uvarov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 32-36. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-106976
record_format dspace
spelling Uvarov, D.V.
2016-10-10T07:47:15Z
2016-10-10T07:47:15Z
2012
AdS₄ x CP³ superstring as OSp(4|6)/(SO(1,3) x U(3)) sigma-model in conformal basis / D.V. Uvarov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 32-36. — Бібліогр.: 21 назв. — англ.
1562-6016
PACS 2010: 11.15.Kc, 11.30.Pb
https://nasplib.isofts.kiev.ua/handle/123456789/106976
Basic features of Lagrangian formulation for AdS₄ x CP³ superstring in the framework of OSp(4|6)/(SO(1,3) x U(3)) sigma-model approach are reviewed with the emphasis on realization osp(4|6) background isometry superalgebra as D = 3 N = 6 superconformal algebra.
Обсуждается лагранжева динамика ІІА суперструны в подпространстве AdS₄ x CP³ суперпространства, изоморфном OSp(4|6)/(SO(1,3) x U(3)) фактор-многообразию. Ключевую роль при построении лагранжиана суперструны как классически-интегрируемой OSp(4|6)/(SO(1,3) x U(3)) сигма-модели играет Z4 дискретный автоморфизм osp(4|6) супералгебры изометрии AdS4 x CP3 суперпространства. Основное внимание уделяется представлению лагранжиана, следующих из него уравнений движения, а также связности Лакса через формы Картана для генераторов D = 3 N = 6 суперконформной алгебры.
Обговорюється лагранжіва динаміка ІІА суперструни в підпросторі AdS₄ x CP³ суперпростору, ізоморфному OSp(4|6)/(SO(1,3) x U(3)) фактор-багатовиду. Ключову роль при побудові лагранжіана суперструни як класично-інтегровної OSp(4|6)/(SO(1,3) x U(3)) сигма-моделі відіграє Z4 дискретний автоморфізм osp(4|6) супералгебри ізометрії AdS4 x CP3 суперпростору. Основну увагу приділено зображенню лагранжіана, рівнянь руху, що з нього випливають, а також зв'язності Лакса через форми Картана для генераторів D = 3 N = 6 суперконформної алгебри.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Section A. Quantum Field Theory
AdS₄ x CP³ superstring as OSp(4|6)/(SO(1,3) x U(3)) sigma-model in conformal basis
AdS₄ x CP³ суперструна как OSp(4|6)/(SO(1,3) x U(3)) сигма-модель в конформном базисе
AdS₄ x CP³ суперструна як OSp(4|6)/(SO(1,3) x U(3)) сигма-модель в конформному базисі
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title AdS₄ x CP³ superstring as OSp(4|6)/(SO(1,3) x U(3)) sigma-model in conformal basis
spellingShingle AdS₄ x CP³ superstring as OSp(4|6)/(SO(1,3) x U(3)) sigma-model in conformal basis
Uvarov, D.V.
Section A. Quantum Field Theory
title_short AdS₄ x CP³ superstring as OSp(4|6)/(SO(1,3) x U(3)) sigma-model in conformal basis
title_full AdS₄ x CP³ superstring as OSp(4|6)/(SO(1,3) x U(3)) sigma-model in conformal basis
title_fullStr AdS₄ x CP³ superstring as OSp(4|6)/(SO(1,3) x U(3)) sigma-model in conformal basis
title_full_unstemmed AdS₄ x CP³ superstring as OSp(4|6)/(SO(1,3) x U(3)) sigma-model in conformal basis
title_sort ads₄ x cp³ superstring as osp(4|6)/(so(1,3) x u(3)) sigma-model in conformal basis
author Uvarov, D.V.
author_facet Uvarov, D.V.
topic Section A. Quantum Field Theory
topic_facet Section A. Quantum Field Theory
publishDate 2012
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt AdS₄ x CP³ суперструна как OSp(4|6)/(SO(1,3) x U(3)) сигма-модель в конформном базисе
AdS₄ x CP³ суперструна як OSp(4|6)/(SO(1,3) x U(3)) сигма-модель в конформному базисі
description Basic features of Lagrangian formulation for AdS₄ x CP³ superstring in the framework of OSp(4|6)/(SO(1,3) x U(3)) sigma-model approach are reviewed with the emphasis on realization osp(4|6) background isometry superalgebra as D = 3 N = 6 superconformal algebra. Обсуждается лагранжева динамика ІІА суперструны в подпространстве AdS₄ x CP³ суперпространства, изоморфном OSp(4|6)/(SO(1,3) x U(3)) фактор-многообразию. Ключевую роль при построении лагранжиана суперструны как классически-интегрируемой OSp(4|6)/(SO(1,3) x U(3)) сигма-модели играет Z4 дискретный автоморфизм osp(4|6) супералгебры изометрии AdS4 x CP3 суперпространства. Основное внимание уделяется представлению лагранжиана, следующих из него уравнений движения, а также связности Лакса через формы Картана для генераторов D = 3 N = 6 суперконформной алгебры. Обговорюється лагранжіва динаміка ІІА суперструни в підпросторі AdS₄ x CP³ суперпростору, ізоморфному OSp(4|6)/(SO(1,3) x U(3)) фактор-багатовиду. Ключову роль при побудові лагранжіана суперструни як класично-інтегровної OSp(4|6)/(SO(1,3) x U(3)) сигма-моделі відіграє Z4 дискретний автоморфізм osp(4|6) супералгебри ізометрії AdS4 x CP3 суперпростору. Основну увагу приділено зображенню лагранжіана, рівнянь руху, що з нього випливають, а також зв'язності Лакса через форми Картана для генераторів D = 3 N = 6 суперконформної алгебри.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/106976
citation_txt AdS₄ x CP³ superstring as OSp(4|6)/(SO(1,3) x U(3)) sigma-model in conformal basis / D.V. Uvarov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 32-36. — Бібліогр.: 21 назв. — англ.
work_keys_str_mv AT uvarovdv ads4xcp3superstringasosp46so13xu3sigmamodelinconformalbasis
AT uvarovdv ads4xcp3superstrunakakosp46so13xu3sigmamodelʹvkonformnombazise
AT uvarovdv ads4xcp3superstrunaâkosp46so13xu3sigmamodelʹvkonformnomubazisí
first_indexed 2025-11-25T22:46:26Z
last_indexed 2025-11-25T22:46:26Z
_version_ 1850575535538700288
fulltext AdS4 × CP 3 SUPERSTRING AS OSp(4|6)/(SO(1, 3)× U(3)) SIGMA-MODEL IN CONFORMAL BASIS D.V. Uvarov∗ National Science Center “Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine (Received October 26, 2011) Basic features of Lagrangian formulation for AdS4×CP 3 superstring in the framework of OSp(4|6)/(SO(1, 3)×U(3)) sigma-model approach are reviewed with the emphasis on realization of osp(4|6) background isometry superalgebra as D = 3 N = 6 superconformal algebra. PACS: 11.25.-w; 11.30.Pb; 11.25.Tq 1. INTRODUCTION Application of relativistic string models to descrip- tion of non-Abelian gauge theories has rather long history going back to the dual resonance models [1] and ’t Hooft approach [2]. The first explicit pro- posal of duality between gauge theory and string the- ory was put forward only in 1997 by Maldacena [3] and intensely exploits the concept of supersymme- try [4, 5]. Since then many other examples of gauge fields/strings dualities were proposed (see, e.g. re- view [6] and references therein), however none of them has been proved from the first principles yet. Even their verification appears a non-trivial task be- cause of non-linearity of the theories involved. To date pivotal role in testing gauge fields/strings duali- ties is played by (super)symmetry considerations. For that reason to the best explored cases belong highly (super)symmetric ones [3, 7]. This note is devoted to reviewing some aspects of classical string theory related to the Aharony- Bergman-Jafferis-Maldacena (ABJM) duality [7] con- jecturing that D = 3 N = 6 Chern-Simons-matter theory admits in the ’t Hooft limit [2] dual descrip- tion as the Type IIA superstring on AdS4 × CP 3 superbackground. This background is known [8] to solve equations of IIA supergravity and preserves 24 of 32 space-time supersymmetries, i.e. correspond- ing Killing spinor equation has 24 independent solu- tions out of 32 maximally allowed. Background sym- metry group is isomorphic to OSp(4|6) supergroup that manifests itself as D = 3 N = 6 superconformal symmetry of the action of dual Chern-Simons-matter theory. This distinguishes ABJM duality from the AdS5/CFT4 one [3] relating D = 4 N = 4 super- Yang-Mills theory and the Type IIB string theory on AdS5×S5 superbackground that is maximally super- symmetric solution of IIB supergravity. PSU(2, 2|4) symmetry of the AdS5×S5 superbackground matches D = 4 N = 4 superconformal symmetry of the action of super-Yang-Mills theory. Symmetry arguments also governed construc- tion of the classical action for AdS5 × S5 su- perstring. It was observed [3] that both parts of the background represent symmetric spaces AdS5 = SO(2, 4)/SO(1, 4) and S5 = SO(6)/SO(5) with isometry groups constituting bosonic subgroup SO(2, 4)×SU(4) of the PSU(2, 2|4) supergroup and the number of fermionic generators of PSU(2, 2|4) equals 32 that is the Grassmann-odd dimension of superspace. This hinted to identify AdS5 × S5 su- perspace as the PSU(2, 2|4)/(SO(1, 4) × SO(5)) su- percoset manifold and the AdS5 ×S5 superstring ac- tion was constructed as the PSU(2, 2|4)/(SO(1, 4)× SO(5)) supercoset sigma-model [9, 10]. It was then found that the superstring Lagrangian can be pre- sented as quadratic polynomial in Cartan forms as- sociated with the psu(2, 2|4)/(so(1, 4) × so(5)) su- percoset generators using their decomposition into eigenspaces of the discrete Z4 automorphism of psu(2, 2|4) superalgebra [11, 12]. Resulting action is invariant under global PSU(2, 2|4) supersymmetry, as well as gauge SO(1, 4)×SO(5) and κ−symmetries and describes correct number of physical degrees of freedom. Moreover, corresponding equations of mo- tion are classically integrable and can be obtained from the zero-curvature condition for the associated Lax connection [13]. Above consideration can be generalized to the AdS4 × CP 3 superstring case. Namely, AdS4 = SO(2, 3)/SO(1, 3) and CP 3 = SU(4)/U(3) are sym- metric spaces and their isometry groups can be combined into bosonic subgroup SO(2, 3) × SO(6) of the OSp(4|6) supergroup that also includes 24 fermionic generators equal in number to the su- persymmetries preserved by AdS4 × CP 3 back- ∗E-mail address: uvarov@kipt.kharkov.ua 32 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2012, N 1. Series: Nuclear Physics Investigations (57), p. 32-36. ground. The OSp(4|6)/(SO(1, 3) × U(3)) super- coset space has 10 space-time and 24 fermionic di- rections lacking 8 fermionic directions to span full AdS4 × CP 3 superspace. Nonetheless it is possible to construct the OSp(4|6)/(SO(1, 3) × U(3)) sigma- model-type action following the straight-forward generalization of the prescription used to obtain PSU(2, 2|4)/(SO(1, 4)×SO(5)) sigma-model [9–12]. In [14,15] there was presented the general structure of the OSp(4|6)/(SO(1, 3)×U(3)) sigma-model includ- ing corresponding equations of motion, κ−symmetry transformation rules and the Lax connection. By choosing the OSp(4|6)/(SO(1, 3) × U(3)) supercoset representative explicit form of the Lagrangian was found to the second order in the world-sheet fields and checked against known Penrose limit Lagrangian [16]. In Ref. [17] we have presented the OSp(4|6)/(SO(1, 3)×U(3)) sigma-model-type action in conformal basis for Cartan forms relying on the osp(4|6) superalgebra realization as the D = 3 N = 6 superconformal algebra. The proof was also given in the SO(1, 2) × SU(3) covariant way that among 24 fermionic equations of motion there are only 16 inde- pendent for non-singular superstring configurations implying 8-parameter κ−symmetry of the action. Besides that we have obtained explicit form of the sigma-model-type Lagrangian to all orders in the space-time and anticommuting coordinates for the OSp(4|6)/(SO(1, 3) × U(3)) representative compat- ible with conformal structure. Such a choice allows to formulate stringy side of the duality in terms of coordinates that contain those parametrizing D = 3 N = 6 boundary superspace, where the ABJM gauge theory [7] can be formulated aiming at getting new insights into the relation between both theories. The OSp(4|6)/(SO(1, 3)×U(3)) supercoset space is the subspace of the full-fledged AdS4 × CP 3 su- perspace. Hence the OSp(4|6)/(SO(1, 3) × U(3)) sigma-model-type action can be obtained by par- tial κ−symmetry gauge fixing of the complete AdS4 × CP 3 superstring action [18]. It is amenable to describe all possible classical string configura- tions, in particular those that cannot be consid- ered within the OSp(4|6)/(SO(1, 3) × U(3)) sigma- model [14, 18], however it does not correspond to a supercoset sigma-model and the issue of its integra- bility remains open [19]. 2. OSp(4|6)/(SO(1, 3) × U(3)) SIGMA-MODEL IN CONFORMAL BASIS The osp(4|6) superalgebra g of AdS4 × CP 3 super- background is isomorphic to D = 3 N = 6 supercon- formal algebra spanned by g = ⎧⎨ ⎩ Mmn, Pm, Km, D Va b, Va, V a Qa μ, Q̄μa, Sμa, S̄μ a ⎫⎬ ⎭ . (1) Generators in the first line are that of D = 3 con- formal group, the second line contains generators of the SU(4) ∼ SO(6) isometry group of CP 3 mani- fold. Remaining fermionic generators have been di- vided into two sets of 12 associated with Poincare and conformal supersymmetries. We adhere to the notations of [17], namely small Latin letters from the middle of the alphabet k, l, m, n = 1, 2, 3 label SO(1, 2) vectors, while that from the beginning of the alphabet a, b, c = 1, 2, 3 label objects transforming in (anti)fundamental representation of SU(3) ⊂ SU(4). Small Greek letters μ, ν, λ stand for 2-component spinor indices of Spin (1, 2). (Anti)commutation re- lations of D = 3 N = 6 superconformal algebra can be found in [17]. Crucial role in constructing OSp(4|6)/(SO(1, 3)× U(3)) sigma-model-type Lagrangian is played by Z4 automorphism Ω of the osp(4|6) superalgebra under which all the generators divide into 4 eigenspaces with different eigenvalues g = g0 ⊕ g1 ⊕ g2 ⊕ g3 : Ω(gk) = ikgk. (2) Invariant eigenspace g0 is spanned by so(1, 3) ⊕ u(3) stability algebra generators. g2 Eigenspace contains so(2, 3)/so(1, 3)⊕ su(4)/u(3) coset generators and g1 and g3 – fermionic ones. In terms of the genera- tors of D = 3 N = 6 superconformal algebra these eigenspaces can be realized as g0 = {Mmn, Pm − Km, Va b}, g2 = {D, Pm + Km, Va, V a}, g1 = {Qa μ + iSa μ, Q̄μa − iS̄μa}, g3 = {Qa μ − iSa μ, Q̄μa + iS̄μa}. (3) Left-invariant Cartan forms C(d) in conformal ba- sis admit the decoposition: C(d) = G−1dG = ωm(d)Pm+ cm(d)Km+ Δ(d)D + Gmn(d)Mmn + Ωa(d)Va + Ωa(d)V a + Ωa b(d)Vb a + ωμ a (d)Qa μ + ω̄μa(d)Q̄μa + χμa(d)Sμa + χ̄a μ(d)S̄μ a , (4) where G ∈ OSp(4|6)/(SO(1, 3) × U(3)) is a super- coset representative. Above division of the osp(4|6) generators under Ω automorphism induces corre- sponding division of Cartan forms C(d) = C0(d) + C2(d) + C1(d) + C3(d) (5) with individual summands defined as C0(d) = 1 2 (ωm(d) − cm(d))(Pm − Km) + Gmn(d)Mmn + Ωa b(d)Vb a; (6) C2(d) = 1 2 (ωm(d) + cm(d))(Pm + Km) + Δ(d)D + Ωa(d)V a + Ωa(d)Va; (7) C1(d) = 1 2 (ωμ a (d) + iχμ a(d))(Qa μ + iSa μ) + 1 2 (ω̄μa(d) − iχ̄μa(d))(Q̄μa − iS̄μa); (8) C3(d) = 1 2 (ωμ a (d) − iχμ a(d))(Qa μ − iSa μ) + 1 2 (ω̄μa(d) + iχ̄μa(d))(Q̄μa + iS̄μa). (9) 33 Global OSp(4|6) transformations act on the super- coset representative according to the rule LG = G′H, L ∈ OSp(4|6) (10) with H ∈ SO(1, 3) × U(3) being the compensating coordinate-dependent rotation under which Cartan forms from eigenspaces 1,2 and 3 transform homoge- neously C′ 1,2,3 = HC1,2,3H −1, (11) whereas C0 Cartan forms transform as SO(1, 3) × U(3) connection C′ 0 = HC0H −1 − H−1dH. (12) The OSp(4|6) and Z4−invariant sigma-model- type action [14] is constructed out of Cartan forms C1,2,3 according to the general prescription [11–13]. In conformal basis for Cartan forms it is brought to the form [17] S = − 1 2 ∫ d2ξ √−ggij [ 1 4 (ωm i + cm i )(ωjm + cjm) + ΔiΔj + 1 2 (ΩiaΩa j + ΩjaΩa i ) ] + SWZ (13) with the Wess-Zumimo action given by SWZ = − 1 4εij ∫ d2ξ [ (ωμ ia + iχμ ia)εμν(ω̄νa j + iχ̄νa j ) + (ωμ ia − iχμ ia)εμν(ω̄νa j − iχ̄νa j ) ] = − 1 2εij ∫ d2ξ ( ωμ iaεμν ω̄νa j +χiμaεμν χ̄a jν ) . (14) The construction implies identification of Cartan forms ωm(d) + cm(d), Δ(d) and Ωa(d), Ωa(d) with tangent to AdS4 and CP 3 components of the su- pervielbein of OSp(4|6)/(SO(1, 3)×U(3)) supercoset manifold. Analogously Cartan forms ωμ a (d) + iχμ a(d), ωμ a (d)− iχμ a(d) and c.c. are identified with the fermi- onic components of supervielbein. Equations of motion resulting from variation of the supervielbein bosonic components tangent to AdS4 and CP 3 parts of the background read ∂i( √−ggij(ωm j + cm j )) + 2 √−ggijGmn i (ωjn +cjn) + 2 √−ggij(cm i − ωm i )Δj +iεij(ωμ ia + iχμ ia)σm μν(ω̄νa j − iχ̄νa j ) −iεij(ωμ ia − iχμ ia)σm μν(ω̄νa j + iχ̄νa j ) = 0, (15) ∂i( √−ggijΔj) + 1 2 √−ggij(ωm i − cm i )(ωjm +cjm) + 1 2εij(ωμ ia + iχμ ia)εμν(ω̄νa j − iχ̄νa j ) + 1 2εij(ωμ ia − iχμ ia)εμν(ω̄νa j + iχ̄νa j ) = 0 (16) and ∂i( √−ggijΩa j ) + i √−ggijΩb i(Ωjb a + δa b Ωjc c) − i 2εijεabc(ωμ ib + iχμ ib)εμν(ων jc + iχν jc) − i 2εijεabc(ωμ ib − iχμ ib)εμν(ων jc − iχν jc) = 0 (17) respectively. Similarly fermionic equations of motions can be cast into the form V ij + [(σmμν(ωm i + cm i ) + 2iεμνΔi)(ων ja + iχν ja) +2εabcΩb i(ω̄ μc j − iχ̄μc j )] = 0 (18) for Cartan forms from the C1 eigenspace (8) and V ij − [(σmμν(ωm i + cm i ) − 2iεμνΔi)(ων ja − iχν ja) −2εabcΩb i(ω̄ μc j + iχ̄μc j )] = 0 (19) for those from the C3 eigenspace (9) and c.c. equa- tions. V ij ± = 1 2 ( √−ggij ± εij) are projectors al- lowing to split world-sheet vectors and tensors into (anti)self-dual parts. Common feature of the Green- Schwarz superstring models is that not all fermi- onic equations are independent. This implies via the second Noether theorem invariance of the su- perstring action under the κ−symmetry. In [17] we gave the proof that in generic case among 24 equations (18), (19) there are only 16 indepen- dent leading to the 8-parameter κ−symmetry of the OSp(4|6)/(SO(1, 3) × U(3)) sigma-model-type action [14]. Such an 8-parameter κ−symmetry is the ‘remnant’ of 16-parameter symmetry of the full AdS4 ×CP 3 superstring [18] remained upon gauging away 8 fermions related to space-time supersymme- tries broken by the AdS4×CP 3 superbackground. It should be noted that the above set of equations has to be supplemented by Virasoro conditions arising upon variation of (13) on auxiliary 2d metric gij : 1 4 (ωm i + cm i )(ωjm + cjm) + ΔiΔj + 1 2 (ΩiaΩa j +ΩjaΩa i )− 1 2gijg i′j′[ 1 4 (ωm i′ +cm i′ )(ωj′m+cj′m) +Δi′Δj′ + Ωi′aΩa j′ ] = 0. (20) Equations of motion (15)-(19) can be obtained from the zero curvature condition dL − L ∧ L = 0 (21) for the Lax connection 1-form L(d) taking value in the osp(4|6) isometry algebra of the AdS4 ×CP 3 su- perbackground [14]. Construction of the connection follows the same steps used to discover Lax repre- sentation for the AdS5 × S5 superstring equations of motion [13]. In conformal basis for Cartan forms it can be written as L = Lconf3 + Lsu(4) + LF , (22) where Lconf3(d) = GmnMmn+ 1 2 (cm − ωm)(Km − Pm) + 1 2 [�1(ωm + cm) + �2 ∗(ωm + cm)](Pm + Km)+(�1Δ+�2 ∗Δ)D∈so(2, 3) (23) and Lsu(4)(d) = Ωa bVb a+Ωa aVb b+(�1Ωa+�2 ∗Ωa)Va + (�1Ωa + �2 ∗Ωa)V a ∈ su(4) (24) are Lax connections for bosonic string on AdS4 and CP 3 manifolds respectively extended by the 34 contributions of 24 anticommuting coordinates of OSp(4|6)/(SO(1, 3) × U(3)) supercoset space. 2d Hodge dual of a 1-form a(d) is defined as ∗ai =√−gεijg jkak. LF is determined by the fermionic gen- erators and Cartan forms: LF (d) = �3 1 2 (ωμ a + iχμ a)(Qa μ + iSa μ) + �4 1 2 (ωμ a − iχμ a)(Qa μ − iSa μ)+c.c. (25) Checking (21) requires using the Maurer-Cartan equations for Cartan forms (4) which explicit form is given in [17]. Also the zero curvature condition (21) restricts parameters �1,..., �4 to be functions of a single spectral parameter. One of their possible parametrizations is as follows: �1 = 1 2 ( z2 + 1 z2 ) , �2 = 1 2 ( 1 z2 − z2 ) , �3 = z, �4 = 1 z , (26) where z is assumed to be complex-valued non-zero. The Lax connection is defined modulo OSp(4|6) gauge transformations L′ = GLG−1 − G−1dG. Spe- cial role is played by such a transformation with G = G, where G is same as used to define Cartan forms in (4). Then the transformed Lax connection can be power series expanded in w = −2 log z around zero: L′ = w ∗J + O(w2), (27) where the leading contribution is given by the Hodge dual of osp(4|6) superalgebra-valued Noether current density J associated with OSp(4|6) global symmetry of the superstring action (13). Complete explicit form of the Noether currents corresponding to realization of the OSp(4|6) global symmetry as D = 3 N = 6 superconformal symmetry was obtained in [20]. To obtain explicit form of OSp(4|6)/(SO(1, 3) × U(3)) superstring action we have considered the OSp(4|6)/(SO(1, 3)× U(3)) supercoset element [17] G = exp (xmPm + θμ aQa μ + θ̄μaQ̄μa) exp (ημaSμa + η̄a μS̄μ a ) exp (zaVa + z̄aV a) expϕD, (28) parametrized by D = 3 N = 6 super-Poincaré coordi- nates (xm, θμ a , θ̄μa), AdS4 radial direction coordinate ϕ, 3 complex coordinates (za, z̄a) of the CP 3 mani- fold, and 12 anticommuting coordinates (ημa, η̄a μ) as- sociated with D = 3 N = 6 conformal supersymme- try. Corresponding expressions for Cartan forms and superstring Lagrangian were derived in [17]. Similar choice of the supercoset representative was consid- ered in [21] when studying the AdS5×S5 superstring in conformal basis for Cartan forms. 3. CONCLUSIONS We have outlined Lagrangian formulation of AdS4 × CP 3 superstring as the OSp(4|6)/(SO(1, 3) × U(3)) sigma-model. The procedure behind the OSp(4|6)/(SO(1, 3) × U(3)) sigma-model construc- tion [14, 15] is similar to that used previously to describe the AdS5 × S5 superstring as the PSU(2, 2|4)/(SO(1, 4)×SO(5)) sigma-model [9–13]. The main distinction is that the osp(4|6) superal- gebra has 24 supersymmetry generators in contrast to 32 generators of the psu(2, 2|4) superalgebra. It is traced back to the fact that AdS4 × CP 3 su- perbackground preserves 24 space-time supersymme- tries, whereas the AdS5 × S5 one preserves all 32 space-time supersymmetries. As a consequence the OSp(4|6)/(SO(1, 3)×U(3)) sigma-model-type action describes the subsector of the AdS4 × CP 3 super- string [18] that does not take into account super- symmetries broken by the background. Important common feature of both supercoset sigma-models is that corresponding equations of motion are integrable and the Lax representation for them is known explic- itly [13–15]. Aiming to elaborate a representation for the OSp(4|6)/(SO(1, 3) × U(3)) sigma-model-type La- grangian that most of all fits symmetry structure of the dual gauge theory [7] we presented it in conformal basis for Cartan forms [17]. To this end we worked out the osp(4|6) superalgebra realization as the D = 3 N = 6 superconformal algebra. There was also given general derivation of the rank of matrices enter- ing fermionic equations of motion and κ−symmetry transformations. Explicit expressions for the osp(4|6) Cartan forms and OSp(4|6)/(SO(1, 3)×U(3)) sigma- model-type Lagrangian were found for the supercoset representative compatible with conformal structure. For the D = 3 N = 6 superconformal symme- try of the Lagrangian complete expressions for the Noether currents were obtained [20]. This results hopefully will be of use in addressing such issues of ABJM correspondence as the spectrum identification, T−duality invariance, Wilson loops/scattering am- plitudes duality. References 1. J.H. Schwarz. Dual resonance theory // Phys. Rept. 1973, v. 4, p. 269-335; Superstring theory // Phys. Rept. 1982, v. 89, p. 223-322. 2. G. ’t Hooft. A planar diagram theory for strong interactions // Nucl. Phys. 1974, v. B72, p. 461- 473. 3. J.M. Maldacena. The large N limit of supercon- formal field theories and supergravity // Adv. Theor. Math. Phys. 1998, v. 2, p. 231-252. 4. Yu.A. Gol’fand and Ye.P. Likhtman. Extension of the algebra of Poincare group generators and violation of P invariance // JETP Lett. 1971, v. 13, p. 323-326 [Pisma v ZhETF. 1971, v. 13, p. 452-455]. 5. D.V. Volkov and V.P. Akulov. Possible universal neutrino interaction // JETP Lett. 1972, v. 16, 35 p. 438-440 [Pisma v ZhETF. 1972, v. 16, p.621- 624]; Is the Neutrino a Goldstone Particle? // Phys. Lett. 1973, v. B46, p. 109-110. 6. K. Peeters and M. Zamaklar. The string/gauge theory correspodence in QCD // Eur. Phys. J. 2007, v. 152, p. 113-138. 7. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena. N = 6 superconformal Chern- Simons-matter theories, M2-branes and their gravity duals // JHEP. 2008, iss. 10, 091. 8. S. Watamura. Spontaneous compactification and Cp(N): SU(3)×SU(2)×U(1), sin2 θW , g(3)/g(2) and SU(3) triplet chiral fermions in 4 dimensions // Phys. Lett. 1984, v. B136, p. 245-250. 9. R.R. Metsaev and A.A. Tseytlin. Type IIB su- perstring action in AdS5 × S5 background // Nucl. Phys. 1998, v. B533, p. 109-126. 10. R. Kallosh, J. Rahmfeld, and A. Rajaraman. Near horizon superspace // JHEP. 1998, iss. 09, 002. 11. N. Berkovits et al. Superstring theory on AdS2× S2 as a coset supermanifold // Nucl. Phys. 2000, v. B567, p. 61-86. 12. R. Roiban and W. Siegel. Superstrings on AdS5 × S5 supertwistor space // JHEP. 2000, iss. 11, 024. 13. I. Bena, J. Polchinski, and R. Roiban. Hidden symmetries of the AdS5×S5 superstring // Phys. Rev. 2004, v. D69, 046002. 14. G. Arutyunov and S. Frolov. Superstrings on AdS4 × CP 3 as a Coset Sigma-model // JHEP. 2008, iss. 09, 129. 15. B.J. Stefanski. Green-Schwarz action for Type IIA strings on AdS4 ×CP 3 // Nucl. Phys. 2009, v. B808, p. 80-87. 16. T. Nishioka and T. Takayanagi. On Type IIA Penrose limit and N = 6 Chern-Simons theories // JHEP. 2008, iss. 08, 001. 17. D.V. Uvarov. AdS4×CP 3 superstring and D = 3 N = 6 superconformal symmetry // Phys. Rev. 2009, v. D79, 106007. 18. J. Gomis, D. Sorokin, and L. Wulff. The com- plete AdS4×CP 3 superspace for type IIA super- string and D−branes // JHEP. 2009, iss. 03, 015. P.A. Grassi, D. Sorokin, and L. Wulff. Simplify- ing superstring and D−brane actions in AdS4 × CP 3 superbackground // JHEP. 2009, iss. 08, 060. 19. D. Sorokin and L. Wulff. Evidence for the clas- sical integrability of the complete AdS4 × CP 3 superstring // JHEP. 2010, iss. 11, 143. 20. D.V. Uvarov. D = 3 N = 6 superconformal sym- metry of AdS4×CP 3 superstring // Class. Quan- tum Grav. 2011, v. 28, 235010. 21. R.R. Metsaev and A.A. Tseytlin. Superstring action in AdS5 × S5: κ−symmetry light cone gauge // Phys. Rev. 2001, v. D63, 046002. AdS4 × CP 3 ����������� � OSp(4|6)/(SO(1, 3) × U(3)) � ��� ������ � ��������� ��� �� ���� ������ �������� � ��� ������ �������� ��� ���� � ��� � ���� �� ��� �� AdS4 × CP 3 ���� � �� ��� � ��� ����� ���� OSp(4|6)/(SO(1, 3) × U(3)) ��� � �������� ����� �������� �� � � ��� ����� ��� ������� ���� � ��� ��� �������������� �� � ����! OSp(4|6)/(SO(1, 3) × U(3)) ������������ �� �� Z4 ���� � ��! �� ��� ���� osp(4|6) ���� ����� � ����� �� AdS4 ×CP 3 ���� � �� ��� ��� �������� �������� ���� � � � ��� ������� ��� �������� ������"�# �� ���� � ������! ������� � � ���� �� ���� � $���� �� �� �� �� �� ��� �� ���� � � �� D = 3 N = 6 ���� ����� ���! ����� �� AdS4 × CP 3 ����������� � OSp(4|6)/(SO(1, 3)× U(3)) � ��� ������ � ���������� ��� �� ���� ������ ������ �% � ��� ���&�� �����&�� ��� ���� � ��� � �&�� �� � & AdS4 × CP 3 ���� � �� � �� &��� �� ����� OSp(4|6)/(SO(1, 3) × U(3)) ��� � ����� ������ ������� �� � � �������& ��� ���&��� ���� � ��� � ���������&� �� ����' OSp(4|6)/(SO(1, 3) × U(3)) �����������& �&�&� �% Z4 ���� � ��! �� ��� �&�� osp(4|6) ���� ����� � &���� &' AdS4×CP 3 ���� � �� � �� ������� ����� � ��&���� ���� ������ ��� ���&���� &�� � �#�� "� � � ��� �������� � � ���� ��( ���� & $���� �� �� �� �� �� ��� �� ���� � � &� D = 3 N = 6 ���� ����� ���' ����� �� )*