Gamma radiation of pulsars as result of inverse compton scattering at acceleration of electrons in a pulsar polar gap

A gamma radiation from pulsars due to inverse Compton scattering of coherent low-frequency radiation on relativistic electrons in a polar gap have been considered. The radio emission in the gap arises due to sub relativistic electron acceleration. The gamma radiation spectrum and luminosity estimate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
Hauptverfasser: Flanchik, A.B., Kontorovich, V.M.
Format: Artikel
Sprache:English
Veröffentlicht: Institute of Radio Astronomy of NASU 2012
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/107010
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Gamma radiation of pulsars as result of inverse compton scattering at acceleration of electrons in a pulsar polar gap / A.B. Flanchik, V.M. Kontorovich // Вопросы атомной науки и техники. — 2012. — № 1. — С. 125-129. — Бібліогр.: 26 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-107010
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1070102025-02-09T15:13:56Z Gamma radiation of pulsars as result of inverse compton scattering at acceleration of electrons in a pulsar polar gap Гамма-излучение пульсаров как результат комптоновского рассеяния при ускорении электронов в полярном зазоре Гамма-випромінювання пульсарів як результат комптонівського розсіювання при прискоренні електронів у полярному зазорі Flanchik, A.B. Kontorovich, V.M. Section B. QED Processes at High Energies A gamma radiation from pulsars due to inverse Compton scattering of coherent low-frequency radiation on relativistic electrons in a polar gap have been considered. The radio emission in the gap arises due to sub relativistic electron acceleration. The gamma radiation spectrum and luminosity estimates have been obtained and connection between gamma radiation and radio emission spectra has been found. Obtained results are in a good agreement with the discovered by Fermi LAT correlation of gamma radiation and radio emission giant pulses in the Crab pulsar. Рассмотрено формирование гамма-излучения пульсаров при обратном комптоновском рассеянии когерентного низкочастотного излучения релятивистских электронов в полярном зазоре. Радиоизлучение в зазоре возникает при ускорении субрелятивистских электронов. Получены спектр и оценки мощности гамма-излучения, а также найдена связь между радиоизлучением и гамма-излучением. Полученные результаты находятся в хорошем согласии с открытой с помощью Fermi LAT корреляцией гамма-излучения и гигантских импульсов радиоизлучения пульсара в Крабовидной туманности. Розглянуто формування гамма-випромінювання пульсарів завдяки зворотному комптонівському розсіюванню когерентного низькочастотного випромінювання релятивістських електронів у полярному зазорі. Радіовипромінювання у зазорі виникає при прискоренні субрелятивістських електронів. Отримано спектр і оцінки потужності гамма-випромінювання, а також знайдено зв'язок між радіовипромінюванням та гамма-випромінюванням. Отримані результати узгоджуються з відкритою за допомогою Fermi LAT кореляцією гамма-випромінювання і гігантських імпульсів радіовипромінювання пульсару у Крабовидної туманності. 2012 Article Gamma radiation of pulsars as result of inverse compton scattering at acceleration of electrons in a pulsar polar gap / A.B. Flanchik, V.M. Kontorovich // Вопросы атомной науки и техники. — 2012. — № 1. — С. 125-129. — Бібліогр.: 26 назв. — англ. 1562-6016 PACS: 97.60.Gb, 98.70.Rz, 12.20.-m https://nasplib.isofts.kiev.ua/handle/123456789/107010 en Вопросы атомной науки и техники application/pdf Institute of Radio Astronomy of NASU
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Section B. QED Processes at High Energies
Section B. QED Processes at High Energies
spellingShingle Section B. QED Processes at High Energies
Section B. QED Processes at High Energies
Flanchik, A.B.
Kontorovich, V.M.
Gamma radiation of pulsars as result of inverse compton scattering at acceleration of electrons in a pulsar polar gap
Вопросы атомной науки и техники
description A gamma radiation from pulsars due to inverse Compton scattering of coherent low-frequency radiation on relativistic electrons in a polar gap have been considered. The radio emission in the gap arises due to sub relativistic electron acceleration. The gamma radiation spectrum and luminosity estimates have been obtained and connection between gamma radiation and radio emission spectra has been found. Obtained results are in a good agreement with the discovered by Fermi LAT correlation of gamma radiation and radio emission giant pulses in the Crab pulsar.
format Article
author Flanchik, A.B.
Kontorovich, V.M.
author_facet Flanchik, A.B.
Kontorovich, V.M.
author_sort Flanchik, A.B.
title Gamma radiation of pulsars as result of inverse compton scattering at acceleration of electrons in a pulsar polar gap
title_short Gamma radiation of pulsars as result of inverse compton scattering at acceleration of electrons in a pulsar polar gap
title_full Gamma radiation of pulsars as result of inverse compton scattering at acceleration of electrons in a pulsar polar gap
title_fullStr Gamma radiation of pulsars as result of inverse compton scattering at acceleration of electrons in a pulsar polar gap
title_full_unstemmed Gamma radiation of pulsars as result of inverse compton scattering at acceleration of electrons in a pulsar polar gap
title_sort gamma radiation of pulsars as result of inverse compton scattering at acceleration of electrons in a pulsar polar gap
publisher Institute of Radio Astronomy of NASU
publishDate 2012
topic_facet Section B. QED Processes at High Energies
url https://nasplib.isofts.kiev.ua/handle/123456789/107010
citation_txt Gamma radiation of pulsars as result of inverse compton scattering at acceleration of electrons in a pulsar polar gap / A.B. Flanchik, V.M. Kontorovich // Вопросы атомной науки и техники. — 2012. — № 1. — С. 125-129. — Бібліогр.: 26 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT flanchikab gammaradiationofpulsarsasresultofinversecomptonscatteringataccelerationofelectronsinapulsarpolargap
AT kontorovichvm gammaradiationofpulsarsasresultofinversecomptonscatteringataccelerationofelectronsinapulsarpolargap
AT flanchikab gammaizlučeniepulʹsarovkakrezulʹtatkomptonovskogorasseâniâpriuskoreniiélektronovvpolârnomzazore
AT kontorovichvm gammaizlučeniepulʹsarovkakrezulʹtatkomptonovskogorasseâniâpriuskoreniiélektronovvpolârnomzazore
AT flanchikab gammavipromínûvannâpulʹsarívâkrezulʹtatkomptonívsʹkogorozsíûvannâpripriskorenníelektronívupolârnomuzazorí
AT kontorovichvm gammavipromínûvannâpulʹsarívâkrezulʹtatkomptonívsʹkogorozsíûvannâpripriskorenníelektronívupolârnomuzazorí
first_indexed 2025-11-27T05:39:44Z
last_indexed 2025-11-27T05:39:44Z
_version_ 1849920835611000832
fulltext GAMMA RADIATION OF PULSARS AS RESULT OF INVERSE COMPTON SCATTERING AT ACCELERATION OF ELECTRONS IN A PULSAR POLAR GAP A.B. Flanchik 1∗and V.M. Kontorovich 1,2 1Institute of Radio Astronomy of NASU, 61002, Kharkov, Ukraine 2Karazin Kharkov National University, 61077, Kharkov, Ukraine (Received November 3, 2011) A gamma radiation from pulsars due to inverse Compton scattering of coherent low-frequency radiation on relativistic electrons in a polar gap have been considered. The radio emission in the gap arises due to sub relativistic electron acceleration. The gamma radiation spectrum and luminosity estimates have been obtained and connection between gamma radiation and radio emission spectra has been found. Obtained results are in a good agreement with the discovered by Fermi LAT correlation of gamma radiation and radio emission giant pulses in the Crab pulsar. PACS: 97.60.Gb, 98.70.Rz, 12.20.-m 1. INTRODUCTION Pulsars are rapidly rotating neutron stars with very strong magnetic fields [1–3], which have mag- netosphere filled with relativistic electron-positron plasma. This plasma is produced by high energy pho- tons in strong magnetic field above the star magnetic poles [2]. Fig. 1. A scheme of the polar gap in pulsars Pulsars are the pulse sources of radio waves and some of them emit high energy gamma radiation. The pulsar gamma radiation arises in an inner gap [4] above a polar cap under magnetosphere of open mag- netic field lines (Fig. 1), which plays a role of an ac- celerator for electrons from the star surface. In pulsar classical models [4,5] the gamma radiation are gener- ated due to curvature radiation (CR) mechanism [6]. We showed [7] that the powerful radio band radia- tion in the gap changes the gamma emission mecha- nism from the curvature radiation to inverse Comp- ton scattering (ICS) of low-frequency radiation. It leads to connection between pulsar gamma ray ra- diation and radio emission. The correlations (both in luminosities and spectra) of pulsar radio emis- sion and gamma ray radiation was predicted in [7]. In that work we considered the polar gap as a res- onator cavity accumulating powerful low-frequency radiation generated by the sparks [4] in the strong electric field of the gap. The formation of the res- onator and accumulation of high energy density have some difficulties. In [8, 9] we have shown that the high energy density of low-frequency radiation may arise because of continuous energy pumping due to emission in electron acceleration process in the gap electric field. The free exit of electrons from the star surface due to low electron work function [10] leads to vanishing the electric field on the surface. This field increases from zero with distance from the star sur- face and emission of electrons falls within the radio spectral range. The Fermi LAT data obtained af- ter our work [7] showed that there is a correlation in phase (Fig. 2) between radio giant pulses and gamma ray radiation [11]. The authors of [11] related this correlation with a reconnection of magnetic force lines near light cylinder [12]. In the Lyutikov model [12] of pulsar giant pulses (Fig. 3) there is a reconnection of magnetic force lines at the periphery of pulsar mag- netosphere near the light cylinder where there is a region of dense hot plasma. Occasional reconnec- tion jets produce high Lorentz factor beams prop- agating along magnetic force lines and emitting co- herent cyclotron-Cherenkov radiation at anomalous Doppler resonance. Due to curvature radiation high ∗Corresponding author E-mail address: alex.svs.fl@gmail.com PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2012, N 1. Series: Nuclear Physics Investigations (57), p. 125-129. 125 energy beams emit also the hard gamma ray photons correlated with radio giant pulses. Fig. 2. Phase correlation between gamma pulses (triangles) and radio giant pulses (circles) observed by Fermi LAT (from the paper of A.Belous et al [11]) The observed phase correlation may be considered also as confirmation of idea of our model that there is a powerful radio emission in the gap and pulsar giant pulses are direct emissions through waveguides in the magnetospheric plasma [13, 14]. The gamma ray radiation leaves the gap through the waveguide too, therefore the phase correlation between the ra- dio giant pulses and gamma ray pulses arises. In the Crab pulsar B0531+21 the waveguide is close to the magnetic axis. Fig. 3. Generation of the Crab pulsar giant pulses in the Lyutikov model [12] Below it is shown that the total luminosity of gamma rays produced by ICS of the low-frequency radiation [7,15] in the gap is sufficient to explain the gamma emission from pulsars if the gamma radiation goes out from the all surface of the polar cap (Fig. 1). 2. HARD GAMMA RAY RADIATION DUE TO INVERSE COMPTON SCATTERING IN THE GAP Because of the high energy density of the low- frequency radiation there are a lot of soft photons in the gap which are scattered by the relativistic elec- trons. As is shown [8] that in this case the spectrum of the coherent radio emission is the power-law I (ω) ∝ ω−α, (1) where α is a spectral index, which has the values from the range 1 ≤ α ≤ 3. The frequencies of initial pho- tons obey a condition h̄ωΓ << mc2, so we can con- sider the ICS in the Thomson limit. In the electron rest frame the differential cross section of the ICS in the strong pulsar magnetic field has the form [16–18] dσ = r2 e 4 ω2 ω2 B ( 1 + cos2 θ ) ( 1 + cos2 θ′ ) dΩ′, (2) where re is the electron classical radius, ωB = eB/mc, B is the star surface magnetic field, θ and θ′ are the angles between magnetic field and mo- menta of the initial and final photons (Fig. 4), dΩ′ = 2π sin θ′dθ′. The cross section dependence on the magnetic field describes the suppression of soft pho- ton Compton scattering in strong magnetic fields [17]. Using Eq. (4) and the Lorentz transformations for angles θ, θ′ we obtain the scattering cross section for the case of the ultrarelativistic electrons dσ = r2 e ω2 ω2 B ( 1 − V c cos θ )2 ( 1 − V c cos θ′ )2 dΩ′. (3) From Eq. (5) it is seen that the scattered radia- tion is quite anisotropic due to relativistic aberration and is concentrated within a narrow cone along the open magnetic field lines. Fig. 4. ICS (left) and its kinematics (right) With help of Eq. (3) we write the scattering proba- bility as [19] w (q,k, Γ) d3q = c ( 1 − V c cos θ ) dσ, where q is the scattered photon wave vector, and 126 w (q,k, Γ) = c4 r2 e ω2 B ( 1 − V c cos θ ) × δ ( ωγ − ω 1 − V c cos θ 1 − V c cos θ′ ) , (4) ωγ is a frequency of gamma ray photon. The spec- trum I (ωγ) dωγof the radiation is given by I (ωγ) = h̄ω3 γ 4π2c3 ∫ w (q,k, Γ)fe (Γ, z) n (k) × dΩ′dΓdΣdz, (5) where fe (Γ, z) and n (k) are the distribution func- tions of electrons and low-frequency photons, which are normalized as ∞∫ 1 fe (Γ, z)dΓ = ne, ∫ h̄ω · n (k) 2d3k (2π)3 = U, ne ≈ nGJ = ΩB/2πce is the average electron concen- tration in the gap (nGJ is the Goldreich-Julian par- ticle density [20]), Ω is the pulsar rotation frequency, and U is the total energy density of the radio emission in the gap. Since the low-frequency radiation spec- trum is power-law we have for the distribution of the low-frequency photons n (k) = π2c3 h̄ (α − 1)Uωα−1 minω−(3+α), (6) and ωmin ∼ 107s−1 is a minimal frequency of low- frequency radiation in the gap. The electron distrib- ution function is given by fe (Γ, z) = neδ (Γ − Γ (z)) . (7) Then the scattered radiation spectral distribution takes a form [7] I (ωγ) = 3 8 22α α + 2 cσT neUΣPC ω2 B ωα−1 min × ω2−α γ h∫ 0 Γ2α−2 (z)dz, (8) with σT being the Thomson cross section. We see from Eq. (8) that in case of power-law radio emis- sion spectrum (1) the gamma ray spectrum is also a power-law with the index connected with the radio spectral index αby the relation [7] αγ = α − 2. (9) This relation appears due to dependence of the scattering cross section on the initial photon fre- quency (see Eq. (2)). According to the Fermi LAT observation data [21] several gamma ray pulsars such as PSR B0531+21 (Crab) and PSR B0833-45 (Vela) obey to this index relation (9). Integrating the spectral distribution (8) over fre- quencies of scattered photons we obtain the estima- tion of the total gamma ray luminosity Iγ = ∫ I (ωγ) dωγ ≈ cgneσT U Γ̄4ΣPCh, (10) where Γ̄ ∼ 108 is the electron maximal Lorentz factor in the gap and g = 24 5 α − 1 ω2 B ωα−1 min ωcf∫ ωmin ω2−αdω. (11) The ICS predominates over the curvature radia- tion and becomes a dominant mechanism of energy losses when the condition satisfies U > Umin = 2e2 3R2 cgσT , where is a curvature radius of magnetic force line. Below we suppose that this condition satisfies. Substituting U ≈ IR/cΣPC to Eq. (10), we ob- tain a relation between radio and gamma ray lumi- nosities [7] Iγ ≈ gσT nehΓ̄4IR. (12) The total radio emission intensity in the gap is determined by contribution of all electrons of the po- lar cap in the radiation formation region. The power emitted by a single electron moving with accelera- tion w = eE/mΓ3 is 2e4E2/3m2c3 [6,22], where E is the accelerating field in the gap [23, 24]. Taking into account the contributions from all emitting electrons and the coherence [25] of emission we have for the total radio luminosity estimate IR ≈ λ2 maxΩ3R3B2 c2 , (13) where R ∼ 106 cm is the star radius and λmax ∼ 102 cm is a wavelength, corresponding to the maxi- mum in the pulsar radio emission spectrum. With help of Eq. (12) we have for the gamma ray luminos- ity Iγ ≈ λ2 maxΩ3R3B2 c2 gσT nehΓ̄4. (14) In dependence on the pulsar parameters, this esti- mate gives 1033 erg/s ≤ Iγ ≤ 1035 erg/s, that agrees with the Fermi LAT data on luminosities of gamma ray pulsars [21]. For the pulsar B0531+21 which is close to orthogonal rotator estimates (13) and (14) should be multiplied by a factor cos2 χ, where χ ≈ 87o is an angle between magnetic and rotation axis of the pulsar B0531+21 then the Eq. (14) gives a correct estimate Iγ ∼ 1035 erg/s for the Crab pulsar gamma ray luminosity too. Earlier [7] we considered the gamma ray radiation exit only through the waveguide near the magnetic 127 axis. But the observations by Fermi LAT show that the gamma ray radiation is observed from larger part of open magnetic force line region. Therefore in esti- mates (10) and (14) we suppose that the area of hard gamma ray formation region is of order of the polar cap area. 3. CONCLUSIONS Due to inverse Compton scattering of the power radio emission on the ultrarelativistic electrons in the gap the gamma-radiation is formed [7]. Giant pulses of radio waves correspond to the free exit of radiation through the waveguide near the magnetic axis [13, 14, 26]. According [11] one can conclude that the gamma radiation direction diagram has also the maximum along the magnetic axis. Through the same break the gamma-radiation goes out from the gap, which explains the angular correlation of the gamma-radiation with the giant pulses, including the case of absence of their simultaneity. The obtained estimates of pulsar gamma ray luminosities and spec- tra agree with Fermi LAT data if we take into account the gamma radiation from the all surface of the polar cap. References 1. F.G. Smith. Pulsars. Cambridge University Press, 1998, 249 p. 2. V.S. Beskin. MHD Flows in Compact Astrophys- ical Objects. Springer, 2010, 425 p. 3. I.F. Malov. Radio pulsars. Moscow: “Nauka”, 2004, 191 p. (in Russian). 4. M.A. Ruderman, P.G. Sutherland. Theory of pulsars: polar gaps, sparks, and coherent mi- crowave radiation // Astrophys. J. 1975, v. 196, p. 51-72. 5. P.A. Sturrock. A model of pulsars // Astrophys. J. 1971, v. 164, p. 529-556. 6. J.D. Jackson. Classical Electrodynamics. New- York: “Wiley”, 1962, 700p. 7. V.M. Kontorovich, A.B. Flanchik. On the con- nection between the gamma and radio spectra of pulsars // Journal of Experimental and Theoret- ical Physics. 2008, v. 106, p. 868-877. 8. V.M. Kontorovich, A.B. Flanchik. High fre- quency cut-off of spectrum and change in the mechanism of radio emission in pul- sars // XXVIII Conference “Actual Prob- lems of Extragalactic Astronomy”, Abstracts. 2011. www.prao.ru/conf/28−conf/registra- tion/docs.php. 9. V.M. Kontorovich, A.B. Flanchik. Low-frequency radio emission with acceleration of electrons in a vacuum gap of a pulsar // Conf. “Physics of Neu- tron Stars”, 2011, Abstract book . 2011, p. 75. 10. P.B. Jones. Properties of condensed matter in very strong magnetic fields // MNRAS. 1986, v. 218, p. 477-485. 11. A.V. Bilous, V.I. Kondratiev, M.A. McLaughlin, et al. Correlation of Fermi photons with high- frequency radio giant pulses from the Crab pulsar // Astrophys. J. 2011, v. 728, p. 110-119. 12. M. Lyutikov. On generation of Crab giant pulses // MNRAS. 2007, v. 381, p. 1190-1196. 13. V.M. Kontorovich. Pulsar giant pulses // Prob- lems of Atomic Science and Technology. 2010, iss. 4, p. 143-148 (in Russian). 14. V.M. Kontorovich. Electromagnetic tornado in the vacuum gap of a pulsar // Journal of Ex- perimental and Theoretical Physics. 2010, v. 110, p. 966-972. 15. V.M. Kontorovich, A.B. Flanchik. Gamma radi- ation of pulsars as result of inverse compton scat- tering at acceleration of electrons in a pulsar vac- uum gap // 3rd Int. Conf. “Quantum Electro- dynamics & Statistical Physics”, 2011, Abstract book. 2011, p. 64. 16. H. Herold. Compton and Thompson scattering in strong magnetic field // Phys. Rev. D. 1979, v. 19, p. 2868-2875. 17. R.D. Blandford, E.T. Scharlemann. On the scat- tering and absorption of electromagnetic radia- tion within pulsar magnetospheres // MNRAS. 1976, v. 174, p. 56-85. 18. Yu.P. Ochelkov, V.V. Usov. Compton scattering of electromagnetic radiation in pulsar magne- tospheres // Astrophys. & Space Sci. 1983, v. 96, p. 55-81. 19. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii. Quantum Electrodynamics. Oxford: Butter- worth-Heinemann, 1994, 650 p. 20. P. Goldreich, W.H. Julian. Pulsar Electrody- namics // Astrophys. J. 1969, v. 157, p. 869-880. 21. A.A. Abdo, M. Ackermann, M. Ajello, et al. The First Fermi Large Area Telescope Catalog of Gamma-ray Pulsars // Astrophys. Journal Suppl. Ser. 2010, v. 187, p. 460-494. 22. L.D. Landau, E.M. Lifshitz. The Classical Theo- ry of Fields. Oxford: “Butterworth-Heinemann”, 1994, 428 p. 23. A.G. Muslimov, A.I. Tsygan. General relativis- tic electric potential drops above pulsar polar caps // MNRAS. 1992, v. 255, p. 61-70. 24. A.K. Harding, A.G. Muslimov. Particle acceler- ation zones above pulsar polar caps: electron and positron pair formation fronts // Astrophys.J. 1998, v. 508, p. 328-346. 128 25. V.L. Ginzburg, V.V. Zheleznyakov, V.V. Zaitsev. Coherent mechanisms of radio emission and mag- netic models of pulsars // Astrophys. Space Sci. 1969, v. 4, p. 464-504. 26. V.M. Kontorovich. On high brightness temper- ature of pulsar giant pulses // ArXiv : astro-ph/ 0909.1018, 2009. ���������� �� ��� ����� ��� � ��� ��� �������������� ���� ���� ��� ����� ��� �� ������� � �������� ����� ���� ����� � �� � �������� � ��������� � �������� �� ����������� �� ��������� ��� ����� �� ������ ������ ������ �� �� �� �� � � � ���������� � � ������ �� �������������� ������� �� � ����� �� ������� ����������� �� � ������ ��� ����� ��� ������ �� ����������������� ������� ��� ������ � ������ � ��� �� ��� ���� ����������� �� � ���!� �"�� � ����� ��!�� ����������� ��� � ����������� ���� ������ �� ���������� �������� � ����#�� �� ����� � �������" � ������$ %&'() *+, ����������" ����� ������ �� � � � ����� ��������� ����������� �� �������� � -������� �" ���� ����� �������������������� ��� ����� �� � ��� ��� ���������� ���� ����������� ��� ������� ��� � ������� � ��������� ������ ���� ����� � �� � �������� � ��� �� ��� ������ � �����������) $�� � �������)� ������� ������ ��� ������ )������� ���� �)$�� $ �� ��� � � � ����������� � � ������) $�� � �������)������� ������� )� � ����� ��� �����)� ���)�������) $�� � � �����) �� ���. ��� �������� ) ����������)������� ������� )�� /���� �� � ������ ) ��) �� ����! ���) �����������) $�� � � ����! � �"�� � ��0���� �)! ���)�������)� $�� �� �� �����������) $�� ��� /����� ) ���������� �� ��!�$���� � �)������$ �� ������ �$ %&'() *+, �������).$ �����������) $�� � ) ) � ������ )������)� ���)�������) $�� � �������� � -������� �1 ���� ���)� 234