Phonons, rotons and ripplons at interfaces
We use dispersive hydrodynamics to describe thermal excitations of superfluid helium 4. Dispersion relation of the bulk quasiparticles, phonons and rotons, acts as an input parameter of the theory. Wiener and Hopf method is used to solve nonlocal equations of the fluid in half-space. The dispersion...
Збережено в:
| Дата: | 2012 |
|---|---|
| Автори: | , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
| Назва видання: | Вопросы атомной науки и техники |
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/107153 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Phonons, rotons and ripplons at interfaces / I.V. Tanatarov, I.N. Adamenko, K.E. Nemchenko, A.F.G. Wyatt // Вопросы атомной науки и техники. — 2012. — № 1. — С. 260-264. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-107153 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1071532025-02-09T21:38:09Z Phonons, rotons and ripplons at interfaces Фононы, ротоны и риплоны на границах раздела Фонони, ротони і ріплони на границях розподілу Tanatarov, I.V. Adamenko, I.N. Nemchenko, K.E. Wyatt, A.F.G. Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases We use dispersive hydrodynamics to describe thermal excitations of superfluid helium 4. Dispersion relation of the bulk quasiparticles, phonons and rotons, acts as an input parameter of the theory. Wiener and Hopf method is used to solve nonlocal equations of the fluid in half-space. The dispersion relation helium surface excitations, ripplons, is derived and analyzed; numerical solution reveals its new unusual branch. The same method applies to the description of bulk quasiparticles’ interaction with the interface with a solid. All quasiparticles creation probabilities are derived and weak interaction of rotons with negative dispersion with interfaces is explained. Для описания тепловых возбуждений сверхтекучего гелия 4 используется нелокальная гидродинамика, в которой дисперсионное соотношение является входным параметром. Для решения нелокальных уравнений жидкости в полупространстве используется метод Винера-Хопфа. Вычислено дисперсионное соотношение поверхностных мод гелия, риплонов; численное решение выявляет существование новой ветви. Это же решение описывает взаимодействие фононов и ротонов с границей раздела с твердым телом. Найдены все вероятности рождения квазичастиц и объяснена слабость взаимодействия ротонов с отрицательной дисперсией с границей раздела. Для опису теплових збуджень надплинного гелію 4 використовується нелокальна гідродинаміка, в якій дисперсійне співвідношення є вхідним параметром. Для розв'язку нелокальних рівнянь рідини в півпросторі використовується метод Вінера-Хопфа. Обчислено дисперсійне співвідношення поверхневих мод гелію, ріплонів; чисельний розв'язок виявляє їх нову гілку. Те ж рішення описує взаємодію фононів і ротонів із границею розподілу із твердих тілом. Знайдені всі вірогідності народження квазічастинок та пояснена слабкість взаємодії ротонів з від'ємною дисперсією із границею розподілу. 2012 Article Phonons, rotons and ripplons at interfaces / I.V. Tanatarov, I.N. Adamenko, K.E. Nemchenko, A.F.G. Wyatt // Вопросы атомной науки и техники. — 2012. — № 1. — С. 260-264. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 47.37.+q, 62.60.+v, 67.25.+k, 67.80.bf. https://nasplib.isofts.kiev.ua/handle/123456789/107153 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases |
| spellingShingle |
Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases Tanatarov, I.V. Adamenko, I.N. Nemchenko, K.E. Wyatt, A.F.G. Phonons, rotons and ripplons at interfaces Вопросы атомной науки и техники |
| description |
We use dispersive hydrodynamics to describe thermal excitations of superfluid helium 4. Dispersion relation of the bulk quasiparticles, phonons and rotons, acts as an input parameter of the theory. Wiener and Hopf method is used to solve nonlocal equations of the fluid in half-space. The dispersion relation helium surface excitations, ripplons, is derived and analyzed; numerical solution reveals its new unusual branch. The same method applies to the description of bulk quasiparticles’ interaction with the interface with a solid. All quasiparticles creation probabilities are derived and weak interaction of rotons with negative dispersion with interfaces is explained. |
| format |
Article |
| author |
Tanatarov, I.V. Adamenko, I.N. Nemchenko, K.E. Wyatt, A.F.G. |
| author_facet |
Tanatarov, I.V. Adamenko, I.N. Nemchenko, K.E. Wyatt, A.F.G. |
| author_sort |
Tanatarov, I.V. |
| title |
Phonons, rotons and ripplons at interfaces |
| title_short |
Phonons, rotons and ripplons at interfaces |
| title_full |
Phonons, rotons and ripplons at interfaces |
| title_fullStr |
Phonons, rotons and ripplons at interfaces |
| title_full_unstemmed |
Phonons, rotons and ripplons at interfaces |
| title_sort |
phonons, rotons and ripplons at interfaces |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2012 |
| topic_facet |
Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/107153 |
| citation_txt |
Phonons, rotons and ripplons at interfaces / I.V. Tanatarov, I.N. Adamenko, K.E. Nemchenko, A.F.G. Wyatt // Вопросы атомной науки и техники. — 2012. — № 1. — С. 260-264. — Бібліогр.: 9 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT tanataroviv phononsrotonsandripplonsatinterfaces AT adamenkoin phononsrotonsandripplonsatinterfaces AT nemchenkoke phononsrotonsandripplonsatinterfaces AT wyattafg phononsrotonsandripplonsatinterfaces AT tanataroviv fononyrotonyiriplonynagranicahrazdela AT adamenkoin fononyrotonyiriplonynagranicahrazdela AT nemchenkoke fononyrotonyiriplonynagranicahrazdela AT wyattafg fononyrotonyiriplonynagranicahrazdela AT tanataroviv fononirotoniíríploninagranicâhrozpodílu AT adamenkoin fononirotoniíríploninagranicâhrozpodílu AT nemchenkoke fononirotoniíríploninagranicâhrozpodílu AT wyattafg fononirotoniíríploninagranicâhrozpodílu |
| first_indexed |
2025-12-01T01:51:38Z |
| last_indexed |
2025-12-01T01:51:38Z |
| _version_ |
1850268871224721408 |
| fulltext |
PHONONS, ROTONS AND RIPPLONS
AT INTERFACES
I.V. Tanatarov 1∗, I.N. Adamenko 2, K.E. Nemchenko 2 and A.F.G. Wyatt 3
1National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
2V.N. Karazin Kharkov National University, 61077, Kharkov, Ukraine
3School of Physics, University of Exeter, Exeter EX4 4QL, UK.
(Received October 24, 2011)
We use dispersive hydrodynamics to describe thermal excitations of superfluid helium 4. Dispersion relation of the
bulk quasiparticles, phonons and rotons, acts as an input parameter of the theory. Wiener and Hopf method is used
to solve nonlocal equations of the fluid in half-space. The dispersion relation helium surface excitations, ripplons, is
derived and analyzed; numerical solution reveals its new unusual branch. The same method applies to the description
of bulk quasiparticles’ interaction with the interface with a solid. All quasiparticles creation probabilities are derived
and weak interaction of rotons with negative dispersion with interfaces is explained.
PACS: 47.37.+q, 62.60.+v, 67.25.+k, 67.80.bf.
1. INTRODUCTION
The bulk and surface thermal excitations of super-
fluid helium are well-defined and long-lived both for
small wave vectors and for large, comparable with
inverse average atomic separation. The distinctive
dispersion relation of the bulk excitations, shown in
Fig. 1, is measured in experiments on neutron scatter-
ing [1]. There is an almost linear phonon part, and a
parabola-like roton part. Rotons with negative group
velocity, to the left from the minimum, are called R−
rotons, and with positive group velocity R+ rotons.
The bulk excitations were studied in a large series
of experiments on pulses of quasiparticles in helium
at very low temperatures (see [3, 4]). R− rotons,
however, eluded direct detection, supposedly due to
anomalously weak interaction with interfaces, as solid
heaters and bolometers were usually used for creation
and detection of pulses. This was further affirmed
by their eventual detection in [3] by means of a spe-
cial source and quantum evaporation, and the effect
needed theoretical description.
Ripplons are quantised capillary waves on the sur-
face of He II. Experiments on neutron scattering in
thin films [5] showed, that they are well-defined quasi-
particles even at frequencies of the order of the roton
gap. It was important to derive theoretically their
dispersion relation for large wave vectors (see [6]).
Both problems were solved using a model in
which the quantum fluid is described as a continuous
medium at all length scales, down to the interatomic
distances [7, 8]. This approach naturally allows to
consider a quantum fluid with essentially arbitrary
nonlinear dispersion relation, and the two problems
turned out to be two sides of one. In this paper we
give a short review of the model and method used,
and the main results of this approach.
2. DISPERSIVE HYDRODYNAMICS
In a quantum fluid atoms are delocalized and values
of variables of continuous medium velocity v, density
ρ and pressure P can be introduced in every mathe-
matical point in space. Then it can be described [7]
by the linearized equations of ideal liquid with equi-
librium density ρq
v̇ = −ρ−1
q ∇P, ρ̇ = −ρq∇v, (1)
complemented with a nonlocal equation of state
ρ(r) =
∫
V
d3r′ h(r, r′)P (r′). (2)
The kernel h can only be the function of |r− r′| for a
homogeneous and isotropic fluid; area of integration
V is the volume filled with the fluid. In terms of one
variable, for example pressure P , this system leads to
a nonlocal wave equation of the form
ΔP =
∫
d3r′ h
(|r − r′|)P̈ (r′). (3)
If the fluid fills the infinite space, the integrand
is a convolution, and Fourier transform gives us the
relation between the kernel’s Fourier image h(k) and
the dispersion relation of the medium Ω(k):
h(k) =
k2
Ω2(k)
. (4)
∗Corresponding author E-mail address: igor.tanatarov@gmail.com
260 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2012, N 1.
Series: Nuclear Physics Investigations (57), p. 260-264.
3. FLUID IN HALF-SPACE
When the fluid fills a half-space z > 0, equation for
P takes the form
ΔP =
∫
z1>0
d3r′ h
(|r − r′|)P̈ (r′), (5)
so there is no convolution any more. Equations of
this type can be solved by the Wiener and Hopf
method, in which the equation is reduced to a
Hilbert-Riemann boundary problem (see [9]), in our
case
P−(kz; ω,kτ )J(kz ; ω,kτ ) + P+(kz ; ω,kτ ) = 0 (6)
for kz ∈ (−∞,∞),
where J(kz ; ω,kτ ) =
Ω2(k) − ω2
Ω2(k)
. (7)
Here kz and kτ are normal and tangential to the in-
terface components of wave vector k = kzez + kτ ;
P+(kz) and P−(kz) are two functions to be found,
analytic in the upper half-plane C+ and lower half-
plane C− of the complex variable kz correspondingly,
so that the signs in the superscripts denote their do-
mains of analyticity. The relation (6) is between their
limiting values on the real line of kz, which separates
those domains C±. P (r) at z > 0 is obtained as the
inverse Fourier transform of P−(k).
The general solution for P±, that takes into ac-
count singular behavior of J at k = 0 and asymptotic
boundary conditions for P− at z → ∞, utilizes fac-
torization of an auxiliary density
I(kz ; ω,kτ ) = J(kz; ω,kτ )
k2
k2 + A2
, (8)
which is bounded and separated from zero on k ∈ �
(here A is some arbitrary positive constant), i.e. its
expression in the form
I(kz) =
I−(kz)
I+(kz)
, (9)
where I−(kz) is a function analytic and with no zeros
in C−, and I+ likewise in C+:
P−(kz; ω,kτ ) =
const
(k − iA)I−(kz; ω,kτ )
. (10)
Solution to the factorization problem is in the gen-
eral case given by
I− = exp
{ 1
2πi
∞∫
−∞
dk′
z
k′
z − kz
ln I(k′
z)
}
. (11)
It can be essentially simplified, however, if we as-
sume the function Ω2 is a polynomial of k2 (and thus
a polynomial of k2
z). In this case the density is fac-
torized in an obvious way in terms of all the roots ki z
of polynomial equation
Ω2(kz ,kτ ) = ω2 : (12)
we obtain I− (I+) by collecting all the factors of I
that have poles and zeros in C+ (C−). The solution
is then brought to
P−(kz ; ω,kτ ) = C(ω,kτ ) · P̃ (kz ; ω,kτ ), where
P̃ (kz ; ω,kτ ) =
∏
i�=1
[
kz − ki z(0,kτ )
]
∏
i
[
kz − ki z(ω,kτ )
] , (13)
and the products are taken over all the roots ki z in
C+. The product in the numerator misses the one
factor with ki z which turns to zero when kτ = 0,
and is eliminated from I before factorization (8).
This root, which corresponds to the long-wavelength
phonon branch, we denote by subscript 1.
In the limit ω → 0 all the factors in the numera-
tor and denominator of P̃ are subtracted except for
the extra one (kz − k1 z) in the denominator, and we
have
P−(kz) ≈ const
kz − k1 z
, where k2
1 z ≈ ω2
s2
− k2
τ , (14)
s is sound velocity in the limit of small ω. Then so-
lution in the coordinate space with a given ω is
P (r, t) ∼ eik1 zr−iωt, k1 z = k1 zez + kτ . (15)
In the general case the inverse Fourier transform
gives monochromatic in ω solutions in the coordinate
space of the form
P (r, t; ω) = C
∑
ki z∈C+
rie
ikir−iωt, (16)
where ki = ki zez + kτ , (17)
and ri is the residue of P̃ (13) in ki z. Using the
equations of continuous medium (1), we obtain for
velocity
v(r, t; ω) =
C
ρqω
∑
ki z∈C+
kirie
ikir−iωt. (18)
Each real root of ki z gives a traveling wave in the
sum, and each complex root gives a damped wave.
4. RIPPLONS
If we want to consider the surface mode of the super-
fluid, we should assume there are no real roots ki z of
the equation (12). This happens when k2
τ is greater
than all the real roots of Ω2(k) = ω2 with respect to
k2. Then all ki z are divided into complex conjugate
pairs, and the solution (13) is unique.
It should be accompanied by the boundary condi-
tions that take account surface tension σ on the free
surface. Writing that pressure at the surface is equal
to the Laplace pressure σ/Rcurv, where Rcurv is the
curvature radius, for small deviations of the surface
from equilibrium we get
P
∣∣∣
z=0
= σkτ2 · vz
iω
∣∣∣
z=0
. (19)
261
On the other side, the solution in the fluid (16,18)
gives
vz|z=0 =
1
ρqω
∑
ki zri∑
ri
· P |z=0. (20)
As P−(kz) is by construction analytic in C−, the poles
ki z constitute all of its poles in the finite part of the
complex plane kz. The sums in the numerator and
denominator are equal to residues of P̃ and kzP̃ at
infinity correspondingly, and those can be calculated
directly by expanding P̃ at kz → ∞:
vz |z=0 =
1
ρqω
{
k1 z +
∑
i>1
[
ki z −ki z(ω = 0)
]} ·P |z=0.
(21)
Comparing (19) and (21), we obtain the equation of
dispersion relation for the surface modes ω(kτ ):
ω2 =
σk2
τ
i ρ0
{
k1 z(ω, kτ )+
∑
i>1
[
ki z(ω, kτ )−ki z(0, kτ )
]}
.
(22)
In the limit ω → 0 the sum tends to zero and
equation turns into
ω2 =
σ
ρ0
k3
τ
√
k2
τ − ω2/s2. (23)
This is also the form it takes when Ω(k) is linear. Ne-
glecting compressibility, in the limit s → ∞ we get
the classic relation ω2 ∼ k3
τ .
Expanding ki z in powers of ω and kτ , and taking
into account the asymptotic ω2 ∼ k3
τ , we can obtain
further corrections:
ω2(kτ ) =
σ
ρq
· k3
τ
{
1− σ
2ρqs2
kτ +
σ2
8ρ2
qs
4
k2
τ+ (24)
− i
σ
ρq
∑
i>1
∂ki z(ω, 0)
∂(ω2)
∣∣∣
ω=0
·
(
k2
τ −
σ
ρqs2
k3
τ
)
+O
(
k4
τ
)}
.
The two summands after unity in the braces take into
account compressibility, and those after them repre-
sent contribution of non-phonon roots. They take
into account non-linearity of Ω(k) and at small k give
only small corrections.
The consideration above applies to arbitrary
dispersion relation Ω(k) which has linear long-
wavelength phonon part. We are now particularly
interested in superfluid helium’s non-monotonic dis-
persion, and in what happens to ripplon’s dispersion
relation close to the frequency of the roton gap Δrot.
In this region dispersion of the two roton roots can
be well approximated by a parabola
Ω(k) ≈ Δrot +
h̄
2μ
(k − krot)2. (25)
Then expansion of the two corresponding roots,
which we will denote as k2 z and k3 z, in terms of
the small parameter (Δrot − ω), contains summands
∼ √
Δrot − ω, which determine the asymptotic be-
havior of ω(kτ ) in the vicinity of the roton gap:
kc − kτ = d ·
√
Δrot − ω. (26)
Fig. 1. Bulk and surface excitations of He II.
Dots are experimental data on neutron scattering
[1, 5]; solid lines are numerical approximation to
the bulk spectrum and the derived dispersion for the
ripplons. Inset shows the new ripplon branch, with
δT ≈1.6 · 10−3K, δk≈0.7 · 10−3Å−1.
Thus the ripplon dispersion curve (Fig. 1) ends
at a point (kc, Δrot) with zero derivative, where kc <
krot is the root of ω(kc) = Δrot, which should be eval-
uated numerically (see below). At higher frequencies
energy-momentum conservation laws allow ripplons’
decay into rotons, and they are unstable. The con-
stant d can be expressed through the parameters of
the spectrum at Δrot:
d =
∣∣∣ b
a + c
∣∣∣; a =
2σ
ρ0
Δ2
rot
k3
c
; b = 2krot
√
2μ/h̄
k2
rot−k2
c
;
c =ikc
{
k−1
1 z (Δrot, kc)+
+
∑
i≥4
k−1
i z (Δrot, kc) −
∑
i≥2
k−1
i z (0, kc)
}
.
Numerical solution gives us the dispersion curve
ω(kτ ) for all frequencies, and gives kc =1.27 Å−1. It
also reveals an unexpected new branch of ripplons at
very high frequencies, close to 2Δrot. This branch is
glued to the bulk dispersion curve from below, and is
stable with regard to decay into bulk excitations.
5. PHONONS AND ROTONS AT
INTERFACE WITH A SOLID
Now let us consider the problem of quasiparticles of
the superfluid interacting with the interface with an-
other medium. In this case the asymptote of the so-
lution at z → ∞ should correspond to isolated trav-
eling quasiparticles, and at least one root ki z should
be real. The easiest way to make sense of the general
solution (13) in this case is the usual roots shifting
from the real line into the upper or lower complex
half-planes. In our case, however, there is additional
condition imposed: the number of real roots shifted
down must be equal to the number of roots shifted
up, so that the index of density I remains equal to
zero. This was an essential ingredient for validity of
the general solution1.
1The index of I in our case is essentially the difference between the number of its zeros in C+ and C−. For mathematical
details we must refer the reader to [9].
262
The real roots ki z go in pairs, and for superfluid
helium their maximum number is N = 6. We will
consider this most general case, as the others N = 2, 4
(N = 0 was discussed in the previous section) can be
deduced in the same way, and the final results can be
directly obtained from the general formulas.
A solution is obtained from (13) by picking arbi-
trary three out of the set of six real roots, which are
then shifted in the upper half-plane and after inverse
Fourier transform give traveling waves in the coordi-
nate space. The overall number of linear-independent
solutions is thus C3
6 = 20. Physically relevant for the
problem of waves/quasiparticles’ interaction with an
interface are four of the set, which contain no more
than one particle traveling towards the interface, i.e.
in the negative direction of axis z, at z → ∞. The
basic, and most interesting, solution, is the one that
contains all three quasiparticles traveling away from
the interface. We will denote it as Pout.
We denote by k1,2,3 the three positive roots of
equation Ω2(k) = ω2 in the order of their absolute
values, such that 1 stands for phonons, 2 for R− ro-
tons, and 3 for R+ rotons. R− rotons have negative
group velocity, and thus propagate in the opposite
direction of their wave-vectors. Therefore the Pout
solution will contain traveling waves corresponding
to k1,2,3, with the signs defined as
0 < k1 z < (−k2 z) < k3 z. (27)
We denote the remaining, initially complex roots of
Eq. (12) in C+, by subscripts i > 3.
Solid’s phonon incident. The Pout solution is the
one that is realized in the fluid when a quasiparticle is
incident on the interface from the solid. Its amplitude
is derived by using boundary conditions discussed be-
low, which gives us the total energy transmission co-
efficient D and the partial ones Di, which describe the
portions of the energy flow of the incident wave trans-
ferred into each of the created ones in the fluid. But it
is important, that the relative amplitudes and energy
flows of the asymptotically distinct three waves are
determined by the structure of solution Pout alone,
with no regard to parameters of the interface. Calcu-
lating the amplitudes of each wave as corresponding
residues ri (16), (18) and group velocities, we derive
the relative energy transmission coefficients:
Di
D
=
ki z
ki z+kj z+kk z
· ki z+kj z
ki z−kj z
ki z+kk z
ki z−kk z
, (28)
where the subscripts {i, j, k} form a permutation of
{1, 2, 3}. These expressions do not depend on ki z
with i > 3. It can be verified directly that
∑
Di = D.
Due to (27), D2
D1,2 (Fig. 2), so R− rotons are
weakly created by a solid’s phonon.
When we consider the full problem of a solid’s
phonon incident on the interface with superfluid he-
lium, we use boundary conditions
P
∣∣
z=−0
= P
∣∣
z=+0
; vz
∣∣
z=−0
= vz
∣∣
z=+0
. (29)
They imply that ω and kτ are the same for all har-
monic summands on both sides of the interface. For
traveling waves this fixes all angles of transmission
and reflection, measured from the normal, via a gen-
eralization of Snell’s law
sin θi
si(ω)
=
sin θj
sj(ω)
∀i, j = 0, 1, . . . (30)
where si(ω) = ω/ki(ω) are phase velocities; subscript
0 denotes solid’s phonons.
In the scalar model the solid’s phonon corresponds
to a longitudinal wave; its dispersion is almost lin-
ear in the frequency scale of helium dispersion curve.
Then the solution in the solid is just a sum of incident
and reflected waves, and in the fluid it is Pout. Then
using the b.c. (29), we express the amplitudes of all
the waves through the amplitude of the incident one,
and calculating energy flows in each of them, derive
full energy transmission coefficient
D(ω, kτ ) =
4 Re kskq
|ks + kq|2
, where (31)
kq =k1 z+
∑
i=2
[
ki z−ki z(ω=0)
]
; ks =
ρq
ρ0
k0 z, (32)
and ρ0 is equilibrium density of the solid. The partial
transmission coefficients are then given by (28).
Due to smallness of parameters ρq/ρ0 and si/s0
for helium and common solids, the transmission coef-
ficients D and Di for real interfaces with helium are
obtained in the effective limit ρq → 0. In this case
the transmission angles θi are small due to (30) and
Di(ω, θi) ≈ Di(ω, 0) cos θi. (33)
Fig. 2. Relative transmission coefficients
Di(ω)/D(ω) at normal incidence. They do not
depend on the parameters of the interface, and
are only determined by dispersion curve Ω(k)
A helium quasiparticle is incident. In this case
the asymptote of the solution in z > 0 must contain
one traveling wave traveling towards the interface. If
the incident quasiparticle carries subscript i, then the
solution can be presented as a linear combination of
Pout and a solution, in which ki z in the denominator
is formally replaced by (−ki z) (numerator stays the
same):
P
(i)
in = Pout
∣∣∣
ki z �→−ki z
. (34)
263
Using the same scheme as used above, we de-
rive the transmission and reflection coefficients. The
transmission coefficients D′
i, when expressed through
conserved quantities ω and kτ , obey the principle of
detailed balance D′
i(ω, kτ ) = Di(ω, kτ ).
There are nine reflection coefficients Rij , where
the first subscript denotes the type of incident quasi-
particle, and the second – of the reflected one:
Rii =
∣∣∣∣ (ki z+kj z)(ki z+kk z)
(ki z−kj z)(ki z−kk z)
∣∣∣∣
2
·
∣∣∣∣1 − 2ki z
ks + kq
∣∣∣∣
2
;
(35)
Rij =
|4ki zkj z|
(ki z−kj z)2
∣∣∣∣(ki z+kk z)(kj z+kk z)
(ki z−kk z)(kj z−kk z)
∣∣∣∣
×
∣∣∣∣1 − ki z+kj z
ks + kq
∣∣∣∣
2
for i �= j. (36)
The formulas for Rij in the form (35,36) hold for
the case when some of the roots ki z are complex.
For example, if k1 z and k2 z are complex, then R11
is given by (35), where the first factor is reduced to
unity. It is then trivial to show that R11 +D1 = 1. It
can be also directly verified in each case, that energy
is always conserved
∑
j Rij + Di = 1.
6. CONCLUSIONS
We used the description of superfluid helium as a
continuous medium at interatomic scales, obeying
equations of nonlocal hydrodynamics. Their solu-
tions apply both to description of surface excita-
tions, ripplons, and interaction of the bulk excita-
tions, phonons and rotons, with interfaces. Ripplons’
dispersion relation is derived, and conforms well with
experimental data. It is shown to end in a point with
zero derivative at the frequency of the roton gap;
new ripplon branch is found at very high frequen-
cies. Creation probabilities of all quasiparticles are
derived when any quasiparticle at the interface be-
tween superfluid helium and a solid. It is shown that
R− rotons weakly interact with interfaces, which also
explains experiments.
References
1. R.J. Donnelly, J.A. Donnelly, and R.N. Hills //
J. Low Temp. Phys., 1981, v. 44, p. 471-489.
2. A.F.G. Wyatt, N.A. Lockberie, and R.A. Sher-
lock // Phys.Rev.Lett., 1974, v. 33, p. 1425-1428.
3. M.A.H. Tucker and A.F.G. Wyatt // Science,
1999, v. 283, p. 1150-1152.
4. D.H.S. Smith and A.F.G. Wyatt // Phys.Rev.B,
2010, v. 81, 134519.
5. H.J. Lauter et al. // Phys.Rev.Lett., 1992, v. 68,
p. 2484.
6. F. Dalfovo et al. // Phys.Rev.B, 1995, v. 52,
p. 1193.
7. I.N. Adamenko, K.E. Nemchenko, I.V. Tanatarov
// Phys. Rev. B, 2003, v. 67, 104513.
8. I.V. Tanatarov, I.N. Adamenko, K.E. Nem-
chenko, and A.F.G. Wyatt, // J. Low Temp.
Phys., 2010, v. 159 (5/6), p. 549-575; Low Temp.
Phys., 2010, v. 36 (7), p. 582.
9. F.D. Gahov. Boundary Value Problems. Dover
Publications, Inc., New York, 1990.
������� ������ � ��
��� �� �����
�� �����
�
���� �������
� ����
������ � ���� ������� � ������ �����
��� ����� ��
�����
� �������� �� �����
������� ����� � ���������
�� ������� �� ������� ����
��� � ��
���� ��������� �� ���
��� �� �����
�� ����
� ������
���� ��� ���� �� �������
�
���� � �� ������
� � ��������
�� �
�� ���������
�� ��
�� � ����!��"��
����� � ��������� �
�� ���
��� �� ������ ��
� ��� ������ ����� ��# ����� �� ���� �� �
�����
��$��
���� ��
���� ��
��� %
� �� ���� �� ����
���
����������
��� "� � �� � ��
� �� � ��� �&�� ������� �
����
�
�
����� '����
��� �����
��
� ����� �� ��������
�& � ��(�� � � ������
� ����������
���
��
� �� � �
��&�
��� �� ���������� � ��� �&�� ��������
������� ������ � ��
��� �� �����
�� ��� ���
�
���� �������
� ����
������ � ���� ������� � ������ �����
��� �����
������� ������ � ����� ��� ���)* � �������
���+
��� ������� � �)����� ��)��� � ��)�
�������)� � ��)��)� ��� � + ��)� �� ������
���� ��� ����,���� ������� �� �)� � � �)�� � � �)��
����
��) �������
���+
��� ��
�� ) ����!��"�� -������ � �������)� � ��)��)� ��� � ������ ����
��� ���)*� �)��� )�# ������ �� ����,���� ������+ .� ��� �)���� /� � �)�� � �����+ ���+���)* "� � )�
) ��
� )� )� ��� �&�* ������)�� )�
������
)���� 0 ���� ) ��) �)���)� ��
) ������ � ����)���
� ��
� ���� � � �����)�
� ���+���). ��
� )� � �)�,+� �* �������)+* )� ��� �&�* ������)���
12�
|