Critical phenomena and critical dimensions in anisotropic nonlinear systems

The model that allows one to generalize the notions of the multicritical and Lifshitz points is considered. The model under consideration includes the higher powers and derivatives of order parameters. Critical phenomena in such systems were studied. We assess the lower and upper critical dimensions...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Babich, A.V., Berezovsky, S.V., Kitcenko, L.N., Klepikov, V.F.
Формат: Стаття
Мова:English
Опубліковано: Institute of Electrophysics and Radiation Technologies NAS of Ukraine 2012
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/107155
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Critical phenomena and critical dimensions in anisotropic nonlinear systems / A.V. Babich, S.V. Berezovsky, L.N. Kitcenko, V.F. Klepikov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 268-272. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-107155
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1071552025-02-09T21:25:35Z Critical phenomena and critical dimensions in anisotropic nonlinear systems Критические явления и критические размерности анизотропных нелинейных систем Критичні явища і критичні розмірності анізотропних нелінійних систем Babich, A.V. Berezovsky, S.V. Kitcenko, L.N. Klepikov, V.F. Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases The model that allows one to generalize the notions of the multicritical and Lifshitz points is considered. The model under consideration includes the higher powers and derivatives of order parameters. Critical phenomena in such systems were studied. We assess the lower and upper critical dimensions of these systems. These calculation enable us to find the fluctuation region where the mean field theory description does not work. Предложена модель, позволяющая обобщить понятия точек Лифшица и мультикритических точек. Предложенная модель учитывает в термодинамическом потенциале как высшие градиенты параметров порядка, так и высшие нелинейности. Рассчитаны верхняя и нижняя критические размерности для такой модели. Полученные результаты позволяют определить флуктуационную область, в которой приближение среднего поля не работает. Запропоновано модель, яка дозволяє узагальнити поняття точок Ліфшица и мультикритичних точок. Модель, що запропоновано, враховує в термодинамічному потенціалі як вищи градієнти параметрів порядку, так і вищи нелінійності. Розраховано верхню і нижчу критичні розмірності для такої моделі. Здобуті результати дозволяють визначити флуктуаційну область, в якій наближення середнього поля не дійсно. 2012 Article Critical phenomena and critical dimensions in anisotropic nonlinear systems / A.V. Babich, S.V. Berezovsky, L.N. Kitcenko, V.F. Klepikov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 268-272. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 64.60.Kw, 64.60-i https://nasplib.isofts.kiev.ua/handle/123456789/107155 en Вопросы атомной науки и техники application/pdf Institute of Electrophysics and Radiation Technologies NAS of Ukraine
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases
Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases
spellingShingle Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases
Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases
Babich, A.V.
Berezovsky, S.V.
Kitcenko, L.N.
Klepikov, V.F.
Critical phenomena and critical dimensions in anisotropic nonlinear systems
Вопросы атомной науки и техники
description The model that allows one to generalize the notions of the multicritical and Lifshitz points is considered. The model under consideration includes the higher powers and derivatives of order parameters. Critical phenomena in such systems were studied. We assess the lower and upper critical dimensions of these systems. These calculation enable us to find the fluctuation region where the mean field theory description does not work.
format Article
author Babich, A.V.
Berezovsky, S.V.
Kitcenko, L.N.
Klepikov, V.F.
author_facet Babich, A.V.
Berezovsky, S.V.
Kitcenko, L.N.
Klepikov, V.F.
author_sort Babich, A.V.
title Critical phenomena and critical dimensions in anisotropic nonlinear systems
title_short Critical phenomena and critical dimensions in anisotropic nonlinear systems
title_full Critical phenomena and critical dimensions in anisotropic nonlinear systems
title_fullStr Critical phenomena and critical dimensions in anisotropic nonlinear systems
title_full_unstemmed Critical phenomena and critical dimensions in anisotropic nonlinear systems
title_sort critical phenomena and critical dimensions in anisotropic nonlinear systems
publisher Institute of Electrophysics and Radiation Technologies NAS of Ukraine
publishDate 2012
topic_facet Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases
url https://nasplib.isofts.kiev.ua/handle/123456789/107155
citation_txt Critical phenomena and critical dimensions in anisotropic nonlinear systems / A.V. Babich, S.V. Berezovsky, L.N. Kitcenko, V.F. Klepikov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 268-272. — Бібліогр.: 11 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT babichav criticalphenomenaandcriticaldimensionsinanisotropicnonlinearsystems
AT berezovskysv criticalphenomenaandcriticaldimensionsinanisotropicnonlinearsystems
AT kitcenkoln criticalphenomenaandcriticaldimensionsinanisotropicnonlinearsystems
AT klepikovvf criticalphenomenaandcriticaldimensionsinanisotropicnonlinearsystems
AT babichav kritičeskieâvleniâikritičeskierazmernostianizotropnyhnelineinyhsistem
AT berezovskysv kritičeskieâvleniâikritičeskierazmernostianizotropnyhnelineinyhsistem
AT kitcenkoln kritičeskieâvleniâikritičeskierazmernostianizotropnyhnelineinyhsistem
AT klepikovvf kritičeskieâvleniâikritičeskierazmernostianizotropnyhnelineinyhsistem
AT babichav kritičníâviŝaíkritičnírozmírnostíanízotropnihnelíníinihsistem
AT berezovskysv kritičníâviŝaíkritičnírozmírnostíanízotropnihnelíníinihsistem
AT kitcenkoln kritičníâviŝaíkritičnírozmírnostíanízotropnihnelíníinihsistem
AT klepikovvf kritičníâviŝaíkritičnírozmírnostíanízotropnihnelíníinihsistem
first_indexed 2025-11-30T23:03:28Z
last_indexed 2025-11-30T23:03:28Z
_version_ 1850258290809765888
fulltext CRITICAL PHENOMENA AND CRITICAL DIMENSIONS IN ANISOTROPIC NONLINEAR SYSTEMS A.V. Babich∗, S.V. Berezovsky, L.N. Kitcenko, V.F. Klepikov Institute of Electrophysics and Radiation Technologies NAS of Ukraine, 61108, Kharkov, Ukraine (Received October 30, 2011) The model that allows one to generalize the notions of the multicritical and Lifshitz points is considered. The model under consideration includes the higher powers and derivatives of order parameters. Critical phenomena in such systems were studied. We assess the lower and upper critical dimensions of these systems. These calculation enable us to find the fluctuation region where the mean field theory description does not work. PACS: 64.60.Kw, 64.60-i 1. INTRODUCTION Second order phase transitions (PT) are ones of the most intensively investigated phenomena in theoret- ical physics. A lot of different kinds of PT have been observed and investigated in various physical systems [1–3]. Initially the basics objects of PT the- ory application were various condensed matter sys- tems. However such fundamentals of PT theory as the spontaneous symmetry breaking, the group- theoretical approach allow one to use predictions of the theory of PT in the fields of physics which from the first view have nothing in common with above mentioned condensed matter systems. One of the most important properties of the sys- tems in vicinity of critical point is a strong increase of fluctuations influence. The influence of the fluc- tuations strongly depends on spatial dimension. In modern theory of critical phenomena the space di- mensionality “d” is usually considered as continuous value [4,5]. It appears in thermodynamic relations as one of the parameters of the system. As mentioned above a critical behavior of the system strongly de- pends on it. One of the effects of this dependence is an ex- istence of the 2 critical (or borderline) dimensions. Lower critical dimension determines the range of the existence ordering states: there are no PT at nonzero temperature if the space dimensionality is less than lower critical dimension, or in other words at lower critical dimension Goldstone bosons start to interact strongly [6]. Upper critical dimension determines a range of the mean field based theories applicability. So if we plot an axis (Fig. 1) of dimensionality then the critical dimensions divide it into 3 regions (dl and du are the upper and lower critical dimensions). The critical dimensions are important not only as “borders”. They are necessary elements for cal- culations of critical indexes in the fluctuation region by various methods based on the renormalization group. In condensed matter theory a consideration of systems with d > 3 is just a trick that allows one to calculate the critical indexes by the renormgroup methods. But in such fields as particle physics, gen- eral relativity and cosmology it is necessary to use models with higher space dimensionalities [7, 8]. dl du1 2 3 d Fig. 1. 1. No ordering. 2. Fluctuation region. PT are possible, but the mean field approximation is invalid. 3. The fluctuations are damped. The mean field approximation is valid 2. MULTICRITICAL AND LIFSHITZ POINTS In the simplest model of PT an expansion of thermo- dynamic potential (TP) looks as follows: Φ = Φ0 + aϕ2 + bϕ4. (1) Here lower and upper critical dimensions equal 2 and 4 correspondingly. In more complicated models crit- ical dimensions depend on the model parameters. There are a few ways to generalize model (1). The first one is to take into account terms with higher powers of the order parameters in the ex- pansion of the TP. It leads one to the notion of the multicritical point. Multicritical points of various types have been observed in many physi- cal systems. The most known example of a sys- tem with the tricritical point (TCP) is the mixture of helium isotopes He3-He4. There are TCPs on phase diagrams of some ferroelectrics for example in KH2PO4 (Fig. 2), antiferromagnetics. Upper CD of systems with TCP is equal to 3, so correspond- ing models are renormalazed in usual physical space. ∗Corresponding author E-mail address: avbabich@yahoo.com 268 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2012, N 1. Series: Nuclear Physics Investigations (57), p. 268-272. Fig. 2. Schematic phase diagram for systam with TCP. β > 0 – second order PT, β < 0 – first order PT Another way is to take into account an inhomo- geneity of the order parameters. It leads one to the notion of the Lifshitz point (LP). The theoretical in- vestigations of PT in systems with anisotropic mod- ulations of the order parameters near the Lifshitz points began in the 1970th and have continued up to date. Initially the main fields of application of these theories were systems with anisotropic mag- netic ordering. But recently systems with Lifshitz points have increasingly arisen interest in such fields of physics as particle physics, quantum gravity and cosmology [7,8]. Lifshitz points arise in systems with modulated structures of OP. There are 3 phases co- exist in LP: initial ordering phase, homogeneous dis- ordered phase and modulated phase (Fig. 3). Modu- lated structures of different types have been observed in a lot of magnetic and ferroelectric crystals (MnP, NaNO2, K2SeO4 etc.). Fig. 3. Schematic phase diagram for system with Lifshitz point. 1 – ordered state, 2 – state with modulated structures, disordered state This paper is about CDs of systems with mutual multicritical and Lifshitz behavior. The simplest ex- ample of such point is tricritical Lifshitz point (Fig.4). Point of that kind has been studied in ferroelectrics of type Sn2P2(SexS1−x)6. Corresponding TP: Φ = Φ0 + α 2 ϕ2 + β 4 ϕ4 + γ 6 ϕ6 + δ 2 ϕ′2 + g 4 ϕ′′2. (2) We introduce a model that allows one to study a system with a new type of critical point. The gra- dients of OP and the highest power of OP in such model may take arbitrary values. Fig. 4. Phase diagram for Sn2P2(SexS1−x)6 in the vicinity of TCLP In the vicinity of the critical point under consid- eration the effective Hamiltonian can be written as follows: H = ∫ dmxid d−mxc { r 2 η2 + γ 2 ( Δ 1 2 i η )2 + + δ 2 ( Δ 1 2 c η )2 + β 2 ( Δ p 2 i η )2 + uη N+1 } , (3) where η is a one-component order parameter, d is the space dimension and r, γ, δ, β, u are the model para- meters. We assume that the space can be divided into two subspaces of dimensions m and d−m denoted by i and c respectively. There are wave modulation vec- tors in the first subspace and none in the second one. Let us assume d and m to be continuous variables and d > m. Δc and Δi are the Laplacian opera- tors available in the corresponding subspaces. In this case the operators Δl are defined as Δl = Δ ( Δl−1 ) . For non-integer values of l and m the corresponding operators are determined using the inverse Fourier transformation. In the critical point r = γ = 0, and the other parameters in (3) are positive quantities. Using the Fourier transformation : η (x) = ∫ ddq · η (q) eiqx, (4) we rewrite the Hamiltonian (3) in momentum space: H = 1 2 ∫ ddqν (q) η (q) η (−q)+ + u ∫ ddq1 · ... · ddqN+1 (5) × δ (q1 + ... + qN+1) (η (q1) ...η (qN+1)) . Here ν (q) = r+γq2 i +βq2p i +δq2 c , qi and qc are the ab- solute values of the wave vector−→q being in the sectors i and c respectively, and q2 i = m∑ α=1 q2 α, q 2 c = d∑ α=m+1 q2 α. The main parameters which determine the criti- cal behavior of the system with the Hamiltonian (3) 269 are the order of higher gradients p, the dimension of the subspace of modulation, and the order of nonlin- earity of the model. 3. THE CRITICAL DIMENSIONS OF THE ANISOTROPIC SYSTEMS The lower critical dimension dl is defined by the fol- lowing condition: there are no ordering states in space with d < dl under condition of nonzero tem- perature. From the thermodynamic point of view it means that fluctuation contribution to entropy is a divergent function of temperature. The fluctuation contribution to entropy looks as follows: Sfl = sτσ(d), (6) here τ = (T − Tc)/Tc is the reduced temperature, σ(d) is a function of space dimensionality and does not depend on T. We are interested in the critical behavior of Sfl, so: lim τ→0 Sfl = { 0 σ(d) < 0, ∞ σ(d) > 0. (7) One can see that under condition Tc �= 0 the fluctu- ation contribution to entropy is a divergent function if σ(d) > 0 otherwise it goes to zero. Thus one can find the lower critical dimension from the following condition: σ(dl) = 0. (8) In order to calculate σ(dl) let us find how the fluc- tuation contribution to entropy depends on the tem- perature. By definition: Sfl(τ) = ∂Gfl ∂τ , (9) here Gfl is a fluctuation contribution to the thermo- dynamic potential, in model (3) it looks as: Gfl = A ∫ dmqi · dd−mqc ln β q2p i + δ q2 c + α τ πT , (10) where A is a parameter that does not depend on tem- perature. From (9) and (10): Sfl = αA ∫ dmqi · dd−mqc ( β q2p i + δ q2 c + α τ )−1 , (11) after some manipulations: Sfl = τ−1αA ∫ dmqi · dd−mq2 c { β · ( qi · τ− 1 2p )2p + +γ · ( qc · τ− 1 2 )2 + α }−2 . (12) After the change of variables κi = qi · τ− 1 2p , κc = qc · τ− 1 2 the final expression for Sfl takes the form: Sfl = τσ(d) · I (κi, κc) , (13) here σ(d) = 2 − (m/2p + (d − m)/2) and the func- tion I (κi, κc) does not depend on t. And finally for σ(d): σ(d) = m 2p + d − m 2 − 1, (14) From (8) and (14): dl = m ( 1 − 1 p ) + 2. (15) There are several ways to calculate the upper crit- ical dimension. First is similar to way we calculated dl - comparing the fluctuation contribution to a heat capcity: CV = T ∂2Φ ∂T 2 = Φ = B 2 (N + 1) (N − 1)2 · t−αl , (16) where αl = 2 − N+1 N−1 . With fluctuation correction to the heat capacity: C1,fl = t−αfl · I (κi, κc) , (17) where αfl = 2 − ( m 2p + d−m 2 ) and the function I (κi, κc) does not depend on t. Second is to find du from the stability condition of the fixed point of corresponding renomgroup trans- formation: ν′(q) = z2a−mb−(d−m) × ( r + δ q2 c b2 + γ q2 i a2 + β q2p i a2p + ... ) , (18) u′(q) = zN+1a−Nb−N(d−m) · (u+...) . (19) Here we take into account that the scale parameters changing the scale for the momenta are independent in the sectors i and c. We denote them a and b re- spectively. The scale parameter for u is denoted by z. Both of those ways lead us to the following expression for du [9]: du = m ( 1 − 1 p ) + 2 N + 1 N − 1 . (20) Also one can find du from the condition of scale varia- tion invariance of the model (3) under transformation with generator: X = N − 1 2 ∂ ∂xc + N − 1 2p ∂ ∂xi − ∂ ∂ϕ . (21) 4. DISCUSSION The spatial distribution of an order parameter is de- fined by the solution of the variational equation for the functional of the free energy. This equation is a nonlinear differential equation (NDE). In our model the order of corresponding equation is 2p. At present there are no universal methods for solving the NDE, therefore of fundamental importance are the meth- ods enabling to simplify the NDE analysis. One of the most effective ways for the NDE analysis is the 270 analysis of its symmetries. Investigation in the group NDE structure allows one to determine the behavior of solutions without defining their explicit form, to find different NDE invariants, in particular, to con- struct the conservation laws. Knowing the symmetry groups of the assumed NDE enables also to construct important classes of particular solutions. Every addi- tional NDE-admitted Lie group allows reducing the equation order by one. The variational symmetries play here a very important role. These symmetries belong to the variational equation, as well as, to the functional, for which the given equation is variational. The presence of the variational symmetry in the NDE makes it possible to reduce its order by 2. The im- portance of the variational symmetries is due to the conservation laws related to them. In paper [9] was shown that model (3) is invariant under scale varia- tional transformations with generators: X̂ = N − 1 2 ∂ ∂xc + N − 1 2p ∂ ∂xi − ∂ ∂ϕ . (22) Let us find the range of the fluctuation region: Δd ≡ du −dl = 4 N − 1 , and lim N→∞ (du −dl) = 0. (23) So, the fluctuation region decreases as a function of power of nonlinearity (see Fig. 5). This fact is physically reasonable. Strong coupling supresses the fluctuations. As it is expected, the lower critical di- mension of any systems is not less then 2. N 1 3 2 Fig. 5. Dependence of Δd on the order of nonlin- earity of the model Let us compare the obtained results with those known previously. As mentioned above, in the case of the simple critical point (N = 3, p = 1, m = 0) the lower and upper CDs are equal to 2 and 4 respec- tively. The CDs of the system with m-axial Lifshitz point (N = 3, p = 2) depend on m linearly (some special cases in 3 and 4 dimensional spaces will be discussed later) . An interesting case is the model with an isotropic Lifshitz-like point with derivatives of order up to p (Lifshitz point of order p). The varia- tional equations in this model coincide with Multidi- mensional Polywave Equation that is invariant under conformal transformations. Let us consider what types of anisotropic system in 3 and 4 dimensional spaces are possible accord- ing to the condition d > dl. There are 2 types of anisotropic systems in three-dimensional space: 1) usual critical point (without anisotropy) dl = 2, and 2) 1-axial Lifshitz point dl = 2, 5. In other cases dl ≥ 3. In the case of 4-dimensional space: 1) usual critical point (without anisotropy) dl = 2, and 2) 1-, 2-, 3-axial Lifshitz point of order 2 dl = 2.5, 3, 3.5. 3) 1-, 2-axial Lifshits point of order p > 2, dl = 3 − 1/p, 4 − 1/p. In other cases dl ≥ 4. In general cases: for some initial order p of the Lifshitz point, the ordering in the space with dimen- sionality d > 2p with any kind of anisotropy is pos- sible. In case of d ≤ 2p, there are various situations and this case demands additional investigation. The obtained results are correct for classical PTs. As we know, in the theory of quantum PTs the ef- fective dimension of a system in the vicinity of the quantum critical point is higher than a dimension of space. So it is apparent that there are more possi- ble types of PTs in a quantum case. In particular, our results do not contradict a possibility of quantum PTs in 2-dimensional systems. References 1. J.C. Toledano and P. Toledano. The Landau Theory of Phase Transitions. Application to Structural, Incommensurate, Magnetic and Liq- uid Crystal Systems. World Scientific Publishing Company, 1987, 461 p. 2. A.D. Bruce and R.A. Cowley. Structural Phase Transitions. 1981, London: Taylor & Francis Ltd., 302 p. 3. A.I. Olemskoi, V.F. Klepikov. The theory of spatiotemporal patterns in nonequilibrium sys- tems // Physics Reports. 2000, v. 338, p. 571-677. 4. A.Z. Patashinskii and V.L. Pokrovskii. Flucta- tion Theory of Phase Transition. 1979, New York: “Pergamon”, p. 524. 5. Shang-keng Ma. Modern Theory of Critical Phe- nomena. 1976, Perseus Books, U.S., p. 299. 6. A.M. Polyakov. Gauge Fields and Strings. Switzerland: “Harwood Academic Publishers”, 1987, p. 327. 7. B.E. Meierovich. Vector order parameter in gen- eral relativity: Covariant equations // Phys. Rev. 2010, v. D82, 024004. 8. K.A. Bronnikov, S.G. Rubin, and I.V. Svadkovsky. Multidimensional world, inflation, and modern acceleration // Phys. Rev. 2010, v. D81, 084010. 271 9. A.V. Babich, S.V. Berezovsky, V.F. Klepikov. Spatial modulation of order parameters and crit- ical dimensions // Int. J. Mod. Phys. 2008, v. B22, p. 851-857. 10. A.V. Babich, L.N. Kitcenko, V.F. Klepikov. Critical dimensions of systems with joint multi- critical and lifshitz-point-like behavior // Mod. Phys. Lett. 2011, v. B25, p. 1839-1845. 11. W. Fushchych, W. Shtelen, N. Serov Symme- try Analysis and Exact Solutions of Equations of nonlinear Mathematical Physics. 1993, Dor- drecht: Kluwer Academic Publishers, 306 p. ����������� � ���� � ����������� �� �������� ��� �������� �� ������� ������ ���� ����� ��� ���� ������ ���� ������� ���� �������� ��������� ������ �������� � �������� ������ ����� ������ � ���������������� ������ ���������� � ����� ���� � �� � ��� ���� ������ ������ �� � � � ���� !� ����� � ��" ��� ����� � � � � � ���� ������#������ $ ����� � ������� � ������ ����������� � � ������� ��� � ��# ������ �������� � ������� � �������� � �������� ������ ������� ��� ���� � ����" ��# ���������� ������!� ��� �� � ��� ��� �������� � ��� � �������� �� �������� ��� �������� �� ������� ������ ���� ����� ��� ���� ������� ���� ������� ���� �������� % �� ���� �� ������ �� �������& �� ! ������ ������ ����� �'���� � �������������� ������ (������ �� � �� ���� ��� �� ����& � ��� ���� ���� � �����' �' �� ���� !� �'&��� � ���'� ������� � � ' ���� ���'�'#����'� $��� ��� �� ������ ' ����� �������' � � '�����' ��� � ��) ����'� %�����' ������� �� ���������� ���� ���� ������ �'#�� ��� ���� � ��'# � �������� ��������!� ��� �� �'#���� *+*