Homogeneous bubble nucleation limit of lead
Liquid heavy metal coolant in a fast reactor, as well as in accelerator driven systems, is exhibited to large thermal and pressure shocks which can cause cavitation in the coolant. Here we calculated the work of the critical bubble formation in the lead coolant and the nucleation rate in terms of th...
Gespeichert in:
| Veröffentlicht in: | Вопросы атомной науки и техники |
|---|---|
| Datum: | 2012 |
| Hauptverfasser: | , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/107158 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Homogeneous bubble nucleation limit of lead / A.S. Abyzov, J.W.P. Schmelzer, L.N. Davydov, V.V. Slezov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 283-287. — Бібліогр.: 15 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-107158 |
|---|---|
| record_format |
dspace |
| spelling |
Abyzov, A.S. Schmelzer, J.W.P. Davydov, L.N. Slezov, V.V. 2016-10-14T10:37:43Z 2016-10-14T10:37:43Z 2012 Homogeneous bubble nucleation limit of lead / A.S. Abyzov, J.W.P. Schmelzer, L.N. Davydov, V.V. Slezov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 283-287. — Бібліогр.: 15 назв. — англ. 1562-6016 PACS: 64.60.Qb, 72.15.Cz https://nasplib.isofts.kiev.ua/handle/123456789/107158 Liquid heavy metal coolant in a fast reactor, as well as in accelerator driven systems, is exhibited to large thermal and pressure shocks which can cause cavitation in the coolant. Here we calculated the work of the critical bubble formation in the lead coolant and the nucleation rate in terms of the generalized Gibbs approach. It is demonstrated that such approach provides a more adequate description of the process of bubble nucleation as compared with the classical nucleation theory. Теплоносители на основе жидких тяжелых металлов в быстрых реакторах и реакторах, управляемых ускорителем, подвержены значительным тепловым и гидравлическим ударам, что может приводить к кавитации теплоносителя. Рассчитаны работа образования критических пузырьков в свинцовом теплоносителе и скорость их зарождения в рамках обобщенного подхода Гиббса. Показано, что такой подход обеспечивает более адекватное описание процесса зарождения пузырьков по сравнению с классической теорией нуклеации. Теплоносії на основі рідких важких металів у швидких реакторах і реакторах, керованих прискорювачем, схильні до значних теплових і гідравлічних ударів, що може призводити до кавітації теплоносія. Розраховані робота утворення критичних пухирців в свинцевому теплоносії та швидкість їх зародження в рамках узагальненого підходу Гіббса. Показано, що такий підхід забезпечує більш адекватний опис процесу зародження пухирців в порівнянні з класичною теорією нуклеації. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases Homogeneous bubble nucleation limit of lead Порог гомогенного зарождения пузырьков в свинце Поріг гомогенного зародження пухирців у свинці Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Homogeneous bubble nucleation limit of lead |
| spellingShingle |
Homogeneous bubble nucleation limit of lead Abyzov, A.S. Schmelzer, J.W.P. Davydov, L.N. Slezov, V.V. Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases |
| title_short |
Homogeneous bubble nucleation limit of lead |
| title_full |
Homogeneous bubble nucleation limit of lead |
| title_fullStr |
Homogeneous bubble nucleation limit of lead |
| title_full_unstemmed |
Homogeneous bubble nucleation limit of lead |
| title_sort |
homogeneous bubble nucleation limit of lead |
| author |
Abyzov, A.S. Schmelzer, J.W.P. Davydov, L.N. Slezov, V.V. |
| author_facet |
Abyzov, A.S. Schmelzer, J.W.P. Davydov, L.N. Slezov, V.V. |
| topic |
Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases |
| topic_facet |
Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases |
| publishDate |
2012 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Порог гомогенного зарождения пузырьков в свинце Поріг гомогенного зародження пухирців у свинці |
| description |
Liquid heavy metal coolant in a fast reactor, as well as in accelerator driven systems, is exhibited to large thermal and pressure shocks which can cause cavitation in the coolant. Here we calculated the work of the critical bubble formation in the lead coolant and the nucleation rate in terms of the generalized Gibbs approach. It is demonstrated that such approach provides a more adequate description of the process of bubble nucleation as compared with the classical nucleation theory.
Теплоносители на основе жидких тяжелых металлов в быстрых реакторах и реакторах, управляемых ускорителем, подвержены значительным тепловым и гидравлическим ударам, что может приводить к кавитации теплоносителя. Рассчитаны работа образования критических пузырьков в свинцовом теплоносителе и скорость их зарождения в рамках обобщенного подхода Гиббса. Показано, что такой подход обеспечивает более адекватное описание процесса зарождения пузырьков по сравнению с классической теорией нуклеации.
Теплоносії на основі рідких важких металів у швидких реакторах і реакторах, керованих прискорювачем, схильні до значних теплових і гідравлічних ударів, що може призводити до кавітації теплоносія. Розраховані робота утворення критичних пухирців в свинцевому теплоносії та швидкість їх зародження в рамках узагальненого підходу Гіббса. Показано, що такий підхід забезпечує більш адекватний опис процесу зародження пухирців в порівнянні з класичною теорією нуклеації.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/107158 |
| citation_txt |
Homogeneous bubble nucleation limit of lead / A.S. Abyzov, J.W.P. Schmelzer, L.N. Davydov, V.V. Slezov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 283-287. — Бібліогр.: 15 назв. — англ. |
| work_keys_str_mv |
AT abyzovas homogeneousbubblenucleationlimitoflead AT schmelzerjwp homogeneousbubblenucleationlimitoflead AT davydovln homogeneousbubblenucleationlimitoflead AT slezovvv homogeneousbubblenucleationlimitoflead AT abyzovas poroggomogennogozaroždeniâpuzyrʹkovvsvince AT schmelzerjwp poroggomogennogozaroždeniâpuzyrʹkovvsvince AT davydovln poroggomogennogozaroždeniâpuzyrʹkovvsvince AT slezovvv poroggomogennogozaroždeniâpuzyrʹkovvsvince AT abyzovas poríggomogennogozarodžennâpuhircívusvincí AT schmelzerjwp poríggomogennogozarodžennâpuhircívusvincí AT davydovln poríggomogennogozarodžennâpuhircívusvincí AT slezovvv poríggomogennogozarodžennâpuhircívusvincí |
| first_indexed |
2025-11-26T18:52:01Z |
| last_indexed |
2025-11-26T18:52:01Z |
| _version_ |
1850768956265070592 |
| fulltext |
HOMOGENEOUS BUBBLE NUCLEATION LIMIT OF LEAD
A.S. Abyzov 1∗, J.W.P. Schmelzer 2, L.N. Davydov 1, and V.V. Slezov 1
1National Science Center “Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
2Institut für Physik der Universität Rostock, 18051, Rostock, Germany
(Received October 31, 2011)
Liquid heavy metal coolant in a fast reactor, as well as in accelerator driven systems, is exhibited to large thermal
and pressure shocks which can cause cavitation in the coolant. Here we calculated the work of the critical bubble
formation in the lead coolant and the nucleation rate in terms of the generalized Gibbs approach. It is demonstrated
that such approach provides a more adequate description of the process of bubble nucleation as compared with the
classical nucleation theory.
PACS: 64.60.Qb, 72.15.Cz
1. INTRODUCTION
Liquid heavy metal heat-carrier (lead, bismuth, eu-
tectic Pb-Bi alloy, mercury) in fast reactors and
accelerator-driven reactors subject to significant ther-
mal and hydraulic shocks. Increase in temperature
and lowering of pressure (down to negative values at
negative phase of a pressure wave period) can result
in a cavitation in the coolant. The newly formed bub-
bles filled with metal vapor, together with a coolant
circulation can come to the high pressure and low
temperature regions, where they collapse and dam-
age the construction materials. There are methods
of controlling pressure shocks, however, temperature
shocks cannot be avoided. In this paper we determine
the criterions of homogeneous bubble nucleation in
the liquid metal lead heat-carrier using the modified
Gibbs approach [1–3] and compare the results with
the classical nucleation theory (CNT).
We approached the problem in three steps. In the
first step (Sec. 2), we calculated the phase equilib-
rium properties, the stability limit and various other
properties of lead by using a slightly modified version
of the equation of state [2] proposed by Redlich and
Kwong [4] (see also [5–7]). In the next step (Sec. 3),
we calculated the work of critical bubble formation in
lead as well as the rate of homogeneous nucleation in
the pressure-temperature range defined according to
the results of the previous section. The paper is com-
pleted by a short summary and discussion (Sec. 4).
2. MODEL SYSTEM
For the description of lead (Pb) in both the liquid and
gas phases, we will apply a slightly modified Redlich-
Kwong-type equation of state as proposed by Morita
et al. (see [4, 5] and, in particular, Eq. (1) in [2]). It
reads
p =
RT
M(v − b)
− a(T )
v(v + c)
, (1)
a(T ) = ac (T/Tc)
m
, (2)
where R = 8.314 J/mol is the universal gas con-
stant, p is pressure, v is molar volume, T is tempera-
ture, ac, b, c and m are the model parameters specific
for the substance, Tc is critical temperature.
We employ further dimensionless variables
Π ≡ p
pc
, ω ≡ v
vc
, θ ≡ T
Tc
, (3)
where vc is the molar volume, pc the pressure both
at the critical point with the critical temperature, Tc.
These parameters can be determined from equation
(1) in the common way via
∂p
∂v
∣∣∣∣
T
=
∂2p
∂v2
∣∣∣∣
T
= 0 at T = Tc. (4)
The equation of state in reduced variables is given
by
Π(θ, ω) =
θ
χc(ω − β)
− α(θ)
ω(ω + ξ)
. (5)
Here
χc =
pcvc
RTc
(6)
is the reduced critical compressibility, and
α(θ) =
acθ
m
pcv2
c
= αθm, (7)
β = b/vc, ξ = c/vc. (8)
According to [6] we have then
α = 5.9, β = 1.7 · 10−3, ξ = 0.768, m = −0.01.
(9)
From equations (1) and (4) we get
pc = 121 MPa, ρc = 1920 kg/m3
,
vc = 5.2 · 10−4 m3/kg, Tc = 5843 K.
(10)
∗Corresponding author E-mail address: abyzov@kipt.kharkov.ua
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2012, N 1.
Series: Nuclear Physics Investigations (57), p. 283-287.
283
The location of the classical spinodal curve can be
found by the determination of the extrema of the
thermal equation of state, Π(θ, ω) (5), considering
the temperature θ as constant. By taking the deriva-
tive of Π(θ, ω) with respect to temperature, we obtain
from equation (5) the result
∂
∂ω
Π(θ, ω) =
α(θ)(2ω + ξ)
ω2(ω + ξ)2
− θ
χc(ω − β)2
= 0. (11)
For θ < 1 , this equation has two positive solutions
ω
(left)
sp and ω
(right)
sp for ω corresponding to the spe-
cific volumes of the both macrophases at the spinodal
curves (or at the limits of metastability). Similarly,
the binodal curves give the values of the specific vol-
umes of the liquid and the gas phases coexisting in
thermal equilibrium at a planar interface. From the
left branch of the binodal curve, we get the specific
volume of the liquid phase ( ω(eq)
l = ω
(left)
b ), from
the right branch of the binodal curve, we obtain the
specific volume of the gas ( ω(eq)
g = ω
(right)
b ). For
θ = 1 , both solutions coincide in the critical point
( ω(eq)
l = ω
(eq)
g = ωc = 1 ), again. Consequently, in
order to determine the specific volumes of the liquid
and the gas at some given temperature in the range
θ ≤ 1 , we have to specify the location of the bin-
odal curve. The location of the binodal curve may be
determined from the necessary thermodynamic equi-
librium conditions (for planar interfaces) – equality
of pressure and chemical potentials – via the solution
of the set of equations
Πl (ωl, θ) = Πg(ωg, θ), μl(ωl, θ) = μg(ωg, θ). (12)
Here by μ the chemical potential of the atoms or
molecules in the liquid (l) and the gas (g) are de-
noted. Having the equation for the reduced pres-
sure (cf. Eq. (5)), we have now to determine in ad-
dition the chemical potential in dependence on pres-
sure and temperature (see Sec. 2). Isotherms for lead
(5) for different values of the reduced temperature
θ = 0.4, 0.65, 0.8, 0.891 and 0.92 are shown in Fig. 1,
dashed and dashed-dotted curves present the binodal
and spinodal curves, correspondingly.
For isothermal processes, the change of the
Helmholtz free energy, dF , may be expressed as
dF = −pdV + μdn. (13)
Here V is the volume of the system and n the number
of moles in it. For a given fixed mole number, n, of
the substance (n = const.), we have
dφn = −pdv, φn =
F
n
, v =
V
n
, (14)
or, in reduced variables,
d
(
φn
pcvc
)
= −Πdω . (15)
Reduced volume, �
R
ed
u
ce
d
p
re
ss
u
re
,
�
0.1 1 10 100
1.25�
1�
0.75�
0.5�
0.25�
0
0.25
0.5
0.75
1
1.25
1.5
� ��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
m
in
=
sp
in
o
d
albi
no
da
l �� � ��
Fig. 1. Isotherms of mercury as described via
equation (5) for different values of the reduced
temperature, from θ = 0.4 (bottom curve) to θ = 1
(upper curve)
Combining equation (15) with the equation of the
state, equation (5), we obtain
φn
pcvc
= −
[
α(θ)
ξ
ln
(
ξ
ω
+ 1
)
+
θ · ln(ω − β)
χc
]
. (16)
Alternatively, the isochoric change of the Helmholtz
free energy is given at constant temperature by
dF = μdn. (17)
From equation (17),
dφv = − μ
v2
dv, φv =
F
V
. (18)
On the other side, the functions dφv and φn are con-
nected by
F = φnn = φvV, φv =
φn
v
. (19)
With equation (16), we have then
φv =
pc
ω
[
α(θ)
ξ
ln
(
ξ
ω
+ 1
)
+
θ · ln(ω − β)
χc
]
. (20)
With equations (18) and (20), the expression for the
chemical potential of a heavy liquid metal (HLM) can
be obtained then via
μ = −v2 ∂φv
∂v
= −veω
2 ∂φv
∂v
. (21)
This relation yields
μ(ω,θ)
pcvc
= −
[
α(θ)
ω+ξ + θ·ω
χc(β−ω)+
+ α(θ)
ξ ln
(
ξ
ω + 1
)
+ θ·ln(ω−β)
χc
]
+ ψ(θ) .
(22)
In addition to the bulk properties of the system,
we have to know the value of the surface tension, σ,
for planar interfaces in dependence on the parameters
describing the state of both phases. The following
form was chosen for our calculation [3, 8–10]
σ(ωg, ωl, θ) = Θ(θ)
[
1
ωl
− 1
ωg
]δ
, (23)
284
where
Θ(θ) = A
[
1
ω
(left)
b
− 1
ω
(right)
b
]k−δ
, δ = 2, (24)
and A and k are constant parameters. Comparison
of equations (23) and (24) with experimental data
[11, 12]
σ(T ) = 0.4857− 0.000066 · T (25)
(valid in this form only for temperatures far below the
critical temperature; here the temperature is given in
Kelvin and the surface tension in J/m2) at ωl = ω
(left)
b
and ωg = ω
(right)
b yields
A = 40.5 · 10−3 J/m2
, k = 1.4. (26)
3. DETERMINATION OF THE WORK OF
CRITICAL CLUSTER FORMATION
Let us assume that the system is brought suddenly
into a metastable state located between binodal curve
and spinodal curve on the liquid side. Then, by nu-
cleation and growth processes, bubbles may appear
spontaneously in the liquid and a phase separation
takes place [13]. Based on the relations outlined
above, we will find the temperature and pressure
dependence of the parameters of the critical vapour
cluster formation. We start with the general expres-
sion for the change of the thermodynamic potential
ΔG = σA+ (p− pα)Vα +
∑
j
njα(μjα − μjβ) . (27)
Here the subscript α specifies the parameters of the
cluster (bubble) phase while β refers to the ambient
liquid phase. This relation holds as long as the state
of the liquid remains unchanged by the formation of
one bubble. For a one-component system, this ex-
pression is reduced to
ΔG = σA+ (p− pα)Vα + nα(μα − μβ) . (28)
As independent variables, we selected the radius
of the bubble, r, and the molar volume of the gas
phase in the bubble. Similarly to [2, 3, 14] we arrive
then at
Δg(r, ωg, ωl, θ)
kBT
= 3
(
1
ωl
− 1
ωg
)δ
r2+2f(ωg, ωl, θ)r3 ,
(29)
where the following notations have been introduced:
f(ωg, ωl, θ) = Π(ωg, θ) − Π(ωl, θ)+
+ (ωgpcvc)
−1 (μ(ωl, θ) − μ(ωg, θ)) ,
(30)
g ≡ G
Ω1
, Ω1 =
16π
3
1
p2
ckBTcθ
Θ3(θ) , (31)
r ≡ R
Rσ
, Rσ =
2
pc
Θ(θ). (32)
The Gibbs free energy surface for the metastable
initial state has a typical saddle shape near to the
configuration corresponding to a bubble of critical
size (see Fig. 2, θ = 0.75, Ω1 = 0.44) in the space
of critical radius-molar volume and work of cluster
formation.
W
o
rk
o
f
cl
u
st
er
f
o
rm
at
io
n
,
�
G
k
T
/
B
2
4
6
Bubble density,
, kg/m
�
g
3
0
1000
300
100 Rad
iu
s o
f b
ubble,
n
m
2.0
8.0
0
Saddle point,
= 3.91
= 1.015 nm
*= 920 kg/m
�
�
G k T
R
c/ B
c
3
3000
6.0
4.0
Fig. 2. Gibbs free energy surface for metastable
initial state, θ = 0.75, Ω1 = 0.44
The critical point position is determined by the
following set of equations
∂Δg(r, ωg, ωl, θ)
∂r
= 0,
∂Δg(r, ωg, ωl, θ)
∂ωg
= 0. (33)
The dependence of the critical cluster parameters
on the negative pressure, p, are shown in Figures 3-
5, for θ = 0.70. The positions of the binodal and
spinodal curves are given then by ω
(left)
b = 0.311 ,
pb = −0.254 , and ω
(left)
sp = 0.44 , psp = 1.174 , cor-
respondingly. psp = 1.812 .
Compare the obtained results with the classical
nucleation theory (CNT). The work of formation of
critical nucleus ΔGclass is determined in this case by
the following equation (see, for example, [13])
ΔGclass
kBT
=
16π
3
σ3
(p− pg)2kBT
. (34)
Fig. 3 presents the dependence of gas density in
critical nucleus on the density of liquid. Close to bin-
odal (at very small metastability) the density of gas
in a bubble only insignificantly differs from its equi-
librium value (the same as in CNT). However, as the
metastability increases the gas density in a bubble
grows, coming closer to the density of the surround-
ing liquid taken at spinodal. At the same time (see
Eq. (23)) the bubble surface energy decreases, and,
correspondingly, the work of nucleus formation also
decreases.
The dependence of the work of critical nucleus for-
mation ΔGc/kBT , on negative pressure in a general-
ized Gibbs model (blue line) and CNT (green line) is
shown in Fig. 4. It is evident that in CNT the work
285
of critical nucleus formation does not “feel” spinodal,
while for in the generalized Gibbs model the work
decreases with the approach to spinodal. Indeed, at
spinodal the gas density in a bubble coincides with
the density of the liquid (see Fig. 3). It means, that
such “nucleus” does not differ from a surrounding
it medium and, naturally, the work of its formation
is equal to zero. Therefore, the nucleation process
close to spinodal goes not through a saddle point,
but through a ridge of the potential ΔG (in details
see [15]).
The behaviour of the critical radius with the ap-
proach to the binodal also differs in these theories:
in the generalized Gibbs model the critical radius
sharply increases (however, this does not influence
the nucleation: as was mentioned above, the nucle-
ation process close to spinodal does not pass through
the saddle point), and in CNT there is no singularity
(Fig. 5).
The nucleation rate is determined by the following
equation
I = I0 exp
(
−ΔGc
kBT
)
. (35)
2 2.3 2.6 2.9 3.2 3.5
0.1
1
10
Liquid density, /� �l c
B
u
b
b
le
g
as
d
en
si
ty
,
/
�
�
g
c
�sp � � �c sp
(left)
/
� �
c b
(right)/S
pi
no
da
l,
�
sp
�
�
�
c
sp(l
ef
t)
/
B
in
od
al
, �
b
�
�
�
c
b(l
ef
t)
/
Fig. 3. Dependence of gas density in the bubble on
liquid density
C
ri
ti
ca
l
w
o
rk
,
�
G
k
T
c
/
B
0.5� 0 0.5 1 1.5 2
1
10
100
10
3
10
4
10
5
Pressure, /p pc
generalized Gibbs
CNT
B
in
o
d
al
S
p
in
o
d
al
Fig. 4. Dependence of work of the critical bubble
formation, ΔGc/kBT , on negative pressure
C
ri
ti
ca
l
ra
d
iu
s,
n
m
�� �
0.1
1
10
100
10
3
B
in
o
d
al
Pressure, /p pc
� � � � � � �
CNT
generalized Gibbs
S
p
in
o
d
al
Fig. 5. Dependence of the radius of the critical
bubble, Rc, on negative pressure
Fig. 6 presents the dependence of the nucleation
rate on negative pressure in the generalized Gibbs
model (blue) and CNT (green) (in calculation the
preexponential factor equaled I0 ≈ 1041 m−3 s−1). It
is evident that the nucleation rate calculated in the
classical theory is several orders less than the gener-
alized Gibbs model predicts.
S
p
in
o
d
al
CNT
Pressure, /p pc
N
u
cl
ea
ti
o
n
r
at
e,
,
m
s
J
-3
-1
� � � � � �
10 10�
10 5�
1
105
1010
10
15
10
20
10
25
1030
1035
1040
ge
ne
ra
liz
ed
Gibbs
Fig. 6. Dependence of nucleation rate J on nega-
tive pressure
4. CONCLUSIONS
Near the binodal the generalized Gibbs approach
leads to the same results as the classical nucleation
theory, but noticeably different ones for enough large
degree of metastability, that is close to the spinodal
(see Figs. 7, 10 and [1, 3, 14]). Therefore, the con-
sidered approach is of importance for cavitational
processes, which take place mainly at large metasta-
bility. It was found that the nucleation rate, calcu-
lated within the generalized Gibbs model is several
orders higher than the classical theory predicts, that
is the limit of cavitational stability is noticeably lower
than in the classical theory. Note that the calcu-
lations were done only for the case of homogeneous
bubble nucleation in the coolant bulk. However, the
heterogeneous nucleation at impurities in the coolant
286
or on the pipelines walls is also possible. The work of
formation of critical bubbles is in this case lower, but
also the number of nucleation sites is much less, there-
fore the influence of heterogeneous nucleation on the
threshold of cavitational stability requires additional
investigation.
References
1. V.V. Slezov. Kinetics of First-Order Phase Tran-
sitions. Weinheim: “Wiley-VCH Publishers”,
2009, 429 p.
2. A.R. Imre, A.S. Abyzov, I.F. Barna, and J.W.P.
Schmelzer. Homogeneous bubble nucleation limit
of mercury under the normal working condi-
tions of the planned European spallation neutron
source // Eur. Phys. J. 2011, v. B79, p. 107-113.
3. J.W.P. Schmelzer, J. Schmelzer, Jr. Kinetics of
bubble formation and the tensile strength of
liquids // Atmospheric Research. 2003, v. 65,
p. 303-324.
4. O. Redlich, J.N.S. Kwong. On the Thermody-
namics of Solutions. V. An Equation of State.
Fugacities of Gaseous Solutions // Chem. Rev.
1949, v. 44, p. 233-244.
5. K. Morita, W. Maschek, M. Flad, Y. Tobita,
H. Yamano. Critical parameters and equation of
state for heavy liquid metals // J. Nucl. Sci.
Technol. 2006, v. 43, p. 526-537.
6. K. Morita, V. Sobolev, M. Flad. Critical para-
meters and equation of state for heavy liquid met-
als // J. Nucl. Mat. 2007, v. 362, p. 227-234.
7. K. Morita, E.A. Fischer. Thermodynamic prop-
erties and equations of state for fast reactor safety
analysis. Part I: Analytic equation-of-state model
// Nucl. Eng. Des. 1998, v. 183, p. 177-191.
8. J.D. van der Waals, Ph. Kohnstamm. Lehrbuch
der Thermodynamik. Leipzig und Amsterdam:
“Johann-Ambrosius-Barth Verlag”, 1908, 646 p.
9. K. Binder. Spinodal Decomposition // Materials
Science and Technology / Edited by R.W. Cahn,
P. Haasen, E.J. Kramer. Weinheim: “VCH”,
1991, v. 5, p. 405.
10. D.B. Macleod. On a relation between surface
tension and density // Trans. Faraday Soc. 1923,
v. 19, p. 38-41.
11. B.B. Alchagirov and A.G. Mozgovoi. Experi-
mental Investigation of the Surface Tension of
Liquid Lead and Bismuth in the Vicinity of the
Melting Point // High Temperature. 2003, v. 41,
p. 412-414.
12. A.E. Schwaneke, W.L. Falke. Surface tension
and density of liquid lead // J. Chem. Eng. Data.
1972, v. 17(3), p. 291-293.
13. V.P. Skripov. Metastable Liquids. New York:
“Wiley”, 1974, 272 p.
14. A.S. Abyzov, J.W.P. Schmelzer. Nucleation ver-
sus spinodal decomposition in confined binary so-
lutions // J. Chem. Phys. 2007, v. 127, 114504.
15. A.S. Abyzov, J.W.P. Schmelzer, A.A. Koval-
chuk, V.V. Slezov. Evolution of Cluster Size-
Distributions in Nucleation-Growth and Spin-
odal Decomposition Processes in a Regular So-
lution // J. Non-Cryst. Solids. 2010, v. 356,
p. 2915.
����� ����������� � ��
����
��������� � ������
���� ������
�����
������� ���� ������� ���� ������
��������� ��� �
������ ��
��� ������ ��
���� � ��� ��� ��
� ��
� � ��
� ��
�� ���
�������
������ ����� ��
������� ��
�� ������ ������� � ��
�
��������� �
�
�� � � ���� �����
� � �
�
��
��� �������� ���� �
����
�� �
��
���
���
��� ��� ������� ��������� � ��������� �����
���� ��� � ������ � �� �
���
���� � �
��
� ����������� ��
��
����
� !��
�
��� � �
��" ��
��
���������
� �����
���
��� ����
��� �������
�
���
���� ��������� �� ��
�����# � ��
��������"
�����" �����
����
����� ����������� � ���
���
�������� � ������
���� ������
�����
������� ���� ������� ���� �������
��������$% �
�����$ �$
��� �
���� ��
�$� � &��
��� ��
� ��
� $ ��
� ��
�� �����
��� �������#�
�
���� ������$
� ��
���� ������� $ �$
�
��$���� �
�$�� �� ���� ������
� �
� �
�$
�$% �������$��
����
���
�$ ����
� ������� ��� ����� ������$� � ���������� �������$%
&��
�$� � %� �
��
����
�� � �
��
� ��
�
�������� �$
��
� $���
� !��
�
��� ��
��" �$
�$
�
�������' �$��&
���
��"
���� ������� �
��
����� ������$� � ���$�����$ � ��
�����# ���$'# �����
�$%�
()*
|